Cargando…
Combined analysis of gene regulatory network and SNV information enhances identification of potential gene markers in mouse knockout studies with small number of samples
RNA-sequencing is widely used to measure gene expression level at the whole genome level. Comparing expression data from control and case studies provides good insight on potential gene markers for phenotypes. However, discovering gene markers that represent phenotypic differences in a small number...
Autores principales: | Hur, Benjamin, Chae, Heejoon, Kim, Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460612/ https://www.ncbi.nlm.nih.gov/pubmed/26044212 http://dx.doi.org/10.1186/1755-8794-8-S2-S10 |
Ejemplares similares
-
CLIP-GENE: a web service of the condition specific context-laid integrative analysis for gene prioritization in mouse TF knockout experiments
por: Hur, Benjamin, et al.
Publicado: (2016) -
scSNV: accurate dscRNA-seq SNV co-expression analysis using duplicate tag collapsing
por: Wilson, Gavin W., et al.
Publicado: (2021) -
PureCN: copy number calling and SNV classification using targeted short read sequencing
por: Riester, Markus, et al.
Publicado: (2016) -
pCADD: SNV prioritisation in Sus scrofa
por: Groß, Christian, et al.
Publicado: (2020) -
Optimal design of gene knockout experiments for gene regulatory network inference
por: Ud-Dean, S. M. Minhaz, et al.
Publicado: (2016)