Cargando…
Detection and analysis of disease-associated single nucleotide polymorphism influencing post-translational modification
Post-translational modification (PTM) plays a crucial role in biological functions and corresponding disease developments. Discovering disease-associated non-synonymous SNPs (nsSNPs) altering PTM sites can help to estimate the various PTM candidates involved in diseases, therefore, an integrated ana...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460713/ https://www.ncbi.nlm.nih.gov/pubmed/26043787 http://dx.doi.org/10.1186/1755-8794-8-S2-S7 |
Sumario: | Post-translational modification (PTM) plays a crucial role in biological functions and corresponding disease developments. Discovering disease-associated non-synonymous SNPs (nsSNPs) altering PTM sites can help to estimate the various PTM candidates involved in diseases, therefore, an integrated analysis between SNPs, PTMs and diseases is necessary. However, only a few types of PTMs affected by nsSNPs have been studied without considering disease-association until now. In this study, we developed a new database called PTM-SNP which contains a comprehensive collection of human nsSNPs that affect PTM sites, together with disease information. Total 179,325 PTM-SNPs were collected by aligning missense SNPs and stop-gain SNPs on PTM sites (position 0) or their flanking region (position -7 to 7). Disease-associated SNPs from GWAS catalogs were also matched with detected PTM-SNP to find disease associated PTM-SNPs. Our result shows PTM-SNPs are highly associated with diseases, compared with other nsSNP sites and functional classes including near gene, intron and so on. PTM-SNP can provide an insight about discovering important PTMs involved in the diseases easily through the web site. PTM-SNP is freely available at http://gcode.kaist.ac.kr/ptmsnp. |
---|