Cargando…

A computational study of diffusion in a glass-forming metallic liquid

Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associa...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, T., Zhang, F., Yang, L., Fang, X. W., Zhou, S. H., Kramer, M. J., Wang, C. Z., Ho, K. M., Napolitano, R. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460728/
https://www.ncbi.nlm.nih.gov/pubmed/26055394
http://dx.doi.org/10.1038/srep10956
_version_ 1782375424584581120
author Wang, T.
Zhang, F.
Yang, L.
Fang, X. W.
Zhou, S. H.
Kramer, M. J.
Wang, C. Z.
Ho, K. M.
Napolitano, R. E.
author_facet Wang, T.
Zhang, F.
Yang, L.
Fang, X. W.
Zhou, S. H.
Kramer, M. J.
Wang, C. Z.
Ho, K. M.
Napolitano, R. E.
author_sort Wang, T.
collection PubMed
description Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. The composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys.
format Online
Article
Text
id pubmed-4460728
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-44607282015-06-18 A computational study of diffusion in a glass-forming metallic liquid Wang, T. Zhang, F. Yang, L. Fang, X. W. Zhou, S. H. Kramer, M. J. Wang, C. Z. Ho, K. M. Napolitano, R. E. Sci Rep Article Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. The composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys. Nature Publishing Group 2015-06-09 /pmc/articles/PMC4460728/ /pubmed/26055394 http://dx.doi.org/10.1038/srep10956 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, T.
Zhang, F.
Yang, L.
Fang, X. W.
Zhou, S. H.
Kramer, M. J.
Wang, C. Z.
Ho, K. M.
Napolitano, R. E.
A computational study of diffusion in a glass-forming metallic liquid
title A computational study of diffusion in a glass-forming metallic liquid
title_full A computational study of diffusion in a glass-forming metallic liquid
title_fullStr A computational study of diffusion in a glass-forming metallic liquid
title_full_unstemmed A computational study of diffusion in a glass-forming metallic liquid
title_short A computational study of diffusion in a glass-forming metallic liquid
title_sort computational study of diffusion in a glass-forming metallic liquid
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460728/
https://www.ncbi.nlm.nih.gov/pubmed/26055394
http://dx.doi.org/10.1038/srep10956
work_keys_str_mv AT wangt acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT zhangf acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT yangl acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT fangxw acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT zhoush acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT kramermj acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT wangcz acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT hokm acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT napolitanore acomputationalstudyofdiffusioninaglassformingmetallicliquid
AT wangt computationalstudyofdiffusioninaglassformingmetallicliquid
AT zhangf computationalstudyofdiffusioninaglassformingmetallicliquid
AT yangl computationalstudyofdiffusioninaglassformingmetallicliquid
AT fangxw computationalstudyofdiffusioninaglassformingmetallicliquid
AT zhoush computationalstudyofdiffusioninaglassformingmetallicliquid
AT kramermj computationalstudyofdiffusioninaglassformingmetallicliquid
AT wangcz computationalstudyofdiffusioninaglassformingmetallicliquid
AT hokm computationalstudyofdiffusioninaglassformingmetallicliquid
AT napolitanore computationalstudyofdiffusioninaglassformingmetallicliquid