Cargando…
A computational study of diffusion in a glass-forming metallic liquid
Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associa...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460728/ https://www.ncbi.nlm.nih.gov/pubmed/26055394 http://dx.doi.org/10.1038/srep10956 |
_version_ | 1782375424584581120 |
---|---|
author | Wang, T. Zhang, F. Yang, L. Fang, X. W. Zhou, S. H. Kramer, M. J. Wang, C. Z. Ho, K. M. Napolitano, R. E. |
author_facet | Wang, T. Zhang, F. Yang, L. Fang, X. W. Zhou, S. H. Kramer, M. J. Wang, C. Z. Ho, K. M. Napolitano, R. E. |
author_sort | Wang, T. |
collection | PubMed |
description | Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. The composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys. |
format | Online Article Text |
id | pubmed-4460728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44607282015-06-18 A computational study of diffusion in a glass-forming metallic liquid Wang, T. Zhang, F. Yang, L. Fang, X. W. Zhou, S. H. Kramer, M. J. Wang, C. Z. Ho, K. M. Napolitano, R. E. Sci Rep Article Liquid phase diffusion plays a critical role in phase transformations (e.g. glass transformation and devitrification) observed in marginal glass forming systems such as Al-Sm. Controlling transformation pathways in such cases requires a comprehensive description of diffusivity, including the associated composition and temperature dependencies. In the computational study reported here, we examine atomic diffusion in Al-Sm liquids using ab initio molecular dynamics (AIMD) and determine the diffusivities of Al and Sm for selected alloy compositions. Non-Arrhenius diffusion behavior is observed in the undercooled liquids with an enhanced local structural ordering. Through assessment of our AIMD result, we construct a general formulation for Al-Sm liquid, involving a diffusion mobility database that includes composition and temperature dependence. A Volmer-Fulcher-Tammann (VFT) equation is adopted for describing the non-Arrhenius behavior observed in the undercooled liquid. The composition dependence of diffusivity is found quite strong, even for the Al-rich region contrary to the sole previous report on this binary system. The model is used in combination with the available thermodynamic database to predict specific diffusivities and compares well with reported experimental data for 0.6 at.% and 5.6 at.% Sm in Al-Sm alloys. Nature Publishing Group 2015-06-09 /pmc/articles/PMC4460728/ /pubmed/26055394 http://dx.doi.org/10.1038/srep10956 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Wang, T. Zhang, F. Yang, L. Fang, X. W. Zhou, S. H. Kramer, M. J. Wang, C. Z. Ho, K. M. Napolitano, R. E. A computational study of diffusion in a glass-forming metallic liquid |
title | A computational study of diffusion in a glass-forming metallic liquid |
title_full | A computational study of diffusion in a glass-forming metallic liquid |
title_fullStr | A computational study of diffusion in a glass-forming metallic liquid |
title_full_unstemmed | A computational study of diffusion in a glass-forming metallic liquid |
title_short | A computational study of diffusion in a glass-forming metallic liquid |
title_sort | computational study of diffusion in a glass-forming metallic liquid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460728/ https://www.ncbi.nlm.nih.gov/pubmed/26055394 http://dx.doi.org/10.1038/srep10956 |
work_keys_str_mv | AT wangt acomputationalstudyofdiffusioninaglassformingmetallicliquid AT zhangf acomputationalstudyofdiffusioninaglassformingmetallicliquid AT yangl acomputationalstudyofdiffusioninaglassformingmetallicliquid AT fangxw acomputationalstudyofdiffusioninaglassformingmetallicliquid AT zhoush acomputationalstudyofdiffusioninaglassformingmetallicliquid AT kramermj acomputationalstudyofdiffusioninaglassformingmetallicliquid AT wangcz acomputationalstudyofdiffusioninaglassformingmetallicliquid AT hokm acomputationalstudyofdiffusioninaglassformingmetallicliquid AT napolitanore acomputationalstudyofdiffusioninaglassformingmetallicliquid AT wangt computationalstudyofdiffusioninaglassformingmetallicliquid AT zhangf computationalstudyofdiffusioninaglassformingmetallicliquid AT yangl computationalstudyofdiffusioninaglassformingmetallicliquid AT fangxw computationalstudyofdiffusioninaglassformingmetallicliquid AT zhoush computationalstudyofdiffusioninaglassformingmetallicliquid AT kramermj computationalstudyofdiffusioninaglassformingmetallicliquid AT wangcz computationalstudyofdiffusioninaglassformingmetallicliquid AT hokm computationalstudyofdiffusioninaglassformingmetallicliquid AT napolitanore computationalstudyofdiffusioninaglassformingmetallicliquid |