Cargando…
SeedsGraph: an efficient assembler for next-generation sequencing data
DNA sequencing technology has been rapidly evolving, and produces a large number of short reads with a fast rising tendency. This has led to a resurgence of research in whole genome shotgun assembly algorithms. We start the assembly algorithm by clustering the short reads in a cloud computing framew...
Autores principales: | Wang, Chunyu, Guo, Maozu, Liu, Xiaoyan, Liu, Yang, Zou, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460749/ https://www.ncbi.nlm.nih.gov/pubmed/26044652 http://dx.doi.org/10.1186/1755-8794-8-S2-S13 |
Ejemplares similares
-
Graph mining for next generation sequencing: leveraging the assembly graph for biological insights
por: Warnke-Sommer, Julia, et al.
Publicado: (2016) -
SEED: efficient clustering of next-generation sequences
por: Bao, Ergude, et al.
Publicado: (2011) -
Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
por: Novák, Petr, et al.
Publicado: (2010) -
System-Level Insights into the Cellular Interactome of a Non-Model Organism: Inferring, Modelling and Analysing Functional Gene Network of Soybean (Glycine max)
por: Xu, Yungang, et al.
Publicado: (2014) -
An efficient and scalable graph modeling approach for capturing information at different levels in next generation sequencing reads
por: Warnke, Julia D, et al.
Publicado: (2013)