Cargando…

Getting the most from venous occlusion plethysmography: proposed methods for the analysis of data with a rest/exercise protocol

BACKGROUND: Venous occlusion plethysmography is a simple yet powerful technique for the non-invasive measurement of blood flow. It has been used extensively in both the experimental and clinical settings. The underlying rationale is that when venous outflow from an extremity is occluded, any immedia...

Descripción completa

Detalles Bibliográficos
Autores principales: Wythe, Stephen, Davies, Thomas, Martin, Daniel, Feelisch, Martin, Gilbert-Kawai, Edward
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460772/
https://www.ncbi.nlm.nih.gov/pubmed/26060573
http://dx.doi.org/10.1186/s13728-015-0027-8
Descripción
Sumario:BACKGROUND: Venous occlusion plethysmography is a simple yet powerful technique for the non-invasive measurement of blood flow. It has been used extensively in both the experimental and clinical settings. The underlying rationale is that when venous outflow from an extremity is occluded, any immediate increase in volume of this compartment must originate from the on-going arterial inflow. Mercury-in-silastic strain gauges are typically used to measure these volume changes, the rates of which are directly proportional to blood flow. RESULTS: When using a simple rest/exercise protocol to provide a local or systemic metabolic stimulus to increase blood flow, current methods for analysing the data obtained are often rather simplistic, solely considering the mean increment in blood flow induced by exercise. Previous methodological considerations have focused mainly on issues of reproducibility and accuracy (for instance, by comparing unilateral and/or bilateral measurements) but rarely on what the recorded traces may actually mean. CONCLUSIONS: In this methodological manuscript, we suggest a more detailed approach to processing venous occlusion plethysmography data, one which could provide additional physiological information. Six parameters are described, all of which are easily derived from a simple and reproducible experimental rest/exercise venous occlusion plethysmography protocol.