Cargando…
Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics
Steering magnetism by electric fields upon interfacing ferromagnetic (FM) and ferroelectric (FE) materials to achieve an emergent multiferroic response bears a great potential for nano-scale devices with novel functionalities. FM/FE heterostructures allow, for instance, the electrical manipulation o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460868/ https://www.ncbi.nlm.nih.gov/pubmed/26058060 http://dx.doi.org/10.1038/srep11111 |
Sumario: | Steering magnetism by electric fields upon interfacing ferromagnetic (FM) and ferroelectric (FE) materials to achieve an emergent multiferroic response bears a great potential for nano-scale devices with novel functionalities. FM/FE heterostructures allow, for instance, the electrical manipulation of magnetic anisotropy via interfacial magnetoelectric (ME) couplings. A charge-mediated ME effect is believed to be generally weak and active in only a few angstroms. Here we present an experimental evidence uncovering a new magnon-driven, strong ME effect acting on the nanometer range. For Co(92)Zr(8) (20 nm) film deposited on ferroelectric PMN-PT we show via ferromagnetic resonance (FMR) that this type of linear ME allows for electrical control of simultaneously the magnetization precession and its damping, both of which are key elements for magnetic switching and spintronics. The experiments unravel further an electric-field-induced negative magnetic permeability effect. |
---|