Cargando…

Conical Gradient Junctions of Dendritic Viologen Arrays on Electrodes

The three-dimensional construction of arrays of functional molecules on an electrode surface, such as organic semiconductors and redox-active molecules, is a considerable challenge in the fabrication of sophisticated junctions for molecular devices. In particular, well-defined organic layers with pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawauchi, Takehiro, Oguchi, Yuki, Nagai, Keiji, Iyoda, Tomokazu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4460877/
https://www.ncbi.nlm.nih.gov/pubmed/26057120
http://dx.doi.org/10.1038/srep11122
Descripción
Sumario:The three-dimensional construction of arrays of functional molecules on an electrode surface, such as organic semiconductors and redox-active molecules, is a considerable challenge in the fabrication of sophisticated junctions for molecular devices. In particular, well-defined organic layers with precise molecular gradients are anticipated to function as novel metal/organic interfaces with specific electrical properties, such as a space charge layer at the metal/semiconductor interface. Here, we report a strategy for the construction of a three-dimensional molecular array with an electrical connection to a metal electrode by exploiting dendritic molecular architecture. Newly designed dendritic molecules consisting of viologens (1,1′-disubstituted-4,4′-bipyridilium salts) as the framework and mercapto groups as anchor units form unique self-assembled monolayers (SAMs) on a gold surface reflecting the molecular design. The dendritic molecules exhibit a conical shape and closely pack to form cone arrays on the substrate, whereas, in solution, they expand into more flexible conformations. Differences in the introduction position of the anchor units in the dendritic structure result in apical- and basal-type cone arrays in which the spatial concentration of the viologen units can be precisely configured in the cones. The concentration in apical-type SAMs increases away from the substrate, whereas the opposite is true in basal-type SAMs.