Cargando…

Structural bases for N-glycan processing by mannoside phosphorylase

The first crystal structure of Uhgb_MP, a β-1,4-mannopyranosyl-chitobiose phosphorylase belonging to the GH130 family which is involved in N-glycan degradation by human gut bacteria, was solved at 1.85 Å resolution in the apo form and in complex with mannose and N-acetylglucosamine. SAXS and crystal...

Descripción completa

Detalles Bibliográficos
Autores principales: Ladevèze, Simon, Cioci, Gianluca, Roblin, Pierre, Mourey, Lionel, Tranier, Samuel, Potocki-Véronèse, Gabrielle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461205/
https://www.ncbi.nlm.nih.gov/pubmed/26057673
http://dx.doi.org/10.1107/S1399004715006604
Descripción
Sumario:The first crystal structure of Uhgb_MP, a β-1,4-mannopyranosyl-chitobiose phosphorylase belonging to the GH130 family which is involved in N-glycan degradation by human gut bacteria, was solved at 1.85 Å resolution in the apo form and in complex with mannose and N-acetylglucosamine. SAXS and crystal structure analysis revealed a hexameric structure, a specific feature of GH130 enzymes among other glycoside phosphorylases. Mapping of the −1 and +1 subsites in the presence of phosphate confirmed the conserved Asp104 as the general acid/base catalytic residue, which is in agreement with a single-step reaction mechanism involving Man O(3) assistance for proton transfer. Analysis of this structure, the first to be solved for a member of the GH130_2 subfamily, revealed Met67, Phe203 and the Gly121–Pro125 loop as the main determinants of the specificity of Uhgb_MP and its homologues towards the N-glycan core oligosaccharides and mannan, and the molecular bases of the key role played by GH130 enzymes in the catabolism of dietary fibre and host glycans.