Cargando…
A Critical Role for CLSP2 in the Modulation of Antifungal Immune Response in Mosquitoes
Entomopathogenic fungi represent a promising class of bio-insecticides for mosquito control. Thus, detailed knowledge of the molecular mechanisms governing anti-fungal immune response in mosquitoes is essential. In this study, we show that CLSP2 is a modulator of immune responses during anti-fungal...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461313/ https://www.ncbi.nlm.nih.gov/pubmed/26057557 http://dx.doi.org/10.1371/journal.ppat.1004931 |
Sumario: | Entomopathogenic fungi represent a promising class of bio-insecticides for mosquito control. Thus, detailed knowledge of the molecular mechanisms governing anti-fungal immune response in mosquitoes is essential. In this study, we show that CLSP2 is a modulator of immune responses during anti-fungal infection in the mosquito Aedes aegypti. With a fungal infection, the expression of the CLSP2 gene is elevated. CLSP2 is cleaved upon challenge with Beauveria bassiana conidia, and the liberated CLSP2 CTL-type domain binds to fungal cell components and B. bassiana conidia. Furthermore, CLPS2 RNA interference silencing significantly increases the resistance to the fungal challenge. RNA-sequencing transcriptome analysis showed that the majority of immune genes were highly upregulated in the CLSP2-depleted mosquitoes infected with the fungus. The up-regulated immune gene cohorts belong to melanization and Toll pathways, but not to the IMD or JAK-STAT. A thioester-containing protein (TEP22), a member of α(2)-macroglobulin family, has been implicated in the CLSP2-modulated mosquito antifungal defense. Our study has contributed to a greater understanding of immune-modulating mechanisms in mosquitoes. |
---|