Cargando…
Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress
Salinity stress, which induces both ionic and osmotic damage, impairs plant growth and causes severe reductions in crop yield. Plants are equipped with defense responses against salinity stress such as regulation of ion transport including Na(+) and K(+), accumulation of compatible solutes and stres...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461821/ https://www.ncbi.nlm.nih.gov/pubmed/26113854 http://dx.doi.org/10.3389/fpls.2015.00427 |
_version_ | 1782375562080157696 |
---|---|
author | Kurusu, Takamitsu Kuchitsu, Kazuyuki Tada, Yuichi |
author_facet | Kurusu, Takamitsu Kuchitsu, Kazuyuki Tada, Yuichi |
author_sort | Kurusu, Takamitsu |
collection | PubMed |
description | Salinity stress, which induces both ionic and osmotic damage, impairs plant growth and causes severe reductions in crop yield. Plants are equipped with defense responses against salinity stress such as regulation of ion transport including Na(+) and K(+), accumulation of compatible solutes and stress-related gene expression. The initial Ca(2+) influx mediated by plasma membrane ion channels has been suggested to be crucial for the adaptive signaling. NADPH oxidase (Nox)-mediated production of reactive oxygen species (ROS) has also been suggested to play crucial roles in regulating adaptation to salinity stress in several plant species including halophytes. Respiratory burst oxidase homolog (Rboh) proteins show the ROS-producing Nox activity, which are synergistically activated by the binding of Ca(2+) to EF-hand motifs as well as Ca(2+)-dependent phosphorylation. We herein review molecular identity, structural features and roles of the Ca(2+)-permeable channels involved in early salinity and osmotic signaling, and comparatively discuss the interrelationships among spatiotemporal dynamic changes in cytosolic concentrations of free Ca(2+), Rboh-mediated ROS production, and downstream signaling events during salinity adaptation in planta. |
format | Online Article Text |
id | pubmed-4461821 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-44618212015-06-25 Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress Kurusu, Takamitsu Kuchitsu, Kazuyuki Tada, Yuichi Front Plant Sci Plant Science Salinity stress, which induces both ionic and osmotic damage, impairs plant growth and causes severe reductions in crop yield. Plants are equipped with defense responses against salinity stress such as regulation of ion transport including Na(+) and K(+), accumulation of compatible solutes and stress-related gene expression. The initial Ca(2+) influx mediated by plasma membrane ion channels has been suggested to be crucial for the adaptive signaling. NADPH oxidase (Nox)-mediated production of reactive oxygen species (ROS) has also been suggested to play crucial roles in regulating adaptation to salinity stress in several plant species including halophytes. Respiratory burst oxidase homolog (Rboh) proteins show the ROS-producing Nox activity, which are synergistically activated by the binding of Ca(2+) to EF-hand motifs as well as Ca(2+)-dependent phosphorylation. We herein review molecular identity, structural features and roles of the Ca(2+)-permeable channels involved in early salinity and osmotic signaling, and comparatively discuss the interrelationships among spatiotemporal dynamic changes in cytosolic concentrations of free Ca(2+), Rboh-mediated ROS production, and downstream signaling events during salinity adaptation in planta. Frontiers Media S.A. 2015-06-10 /pmc/articles/PMC4461821/ /pubmed/26113854 http://dx.doi.org/10.3389/fpls.2015.00427 Text en Copyright © 2015 Kurusu, Kuchitsu and Tada. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Kurusu, Takamitsu Kuchitsu, Kazuyuki Tada, Yuichi Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress |
title | Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress |
title_full | Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress |
title_fullStr | Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress |
title_full_unstemmed | Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress |
title_short | Plant signaling networks involving Ca(2+) and Rboh/Nox-mediated ROS production under salinity stress |
title_sort | plant signaling networks involving ca(2+) and rboh/nox-mediated ros production under salinity stress |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461821/ https://www.ncbi.nlm.nih.gov/pubmed/26113854 http://dx.doi.org/10.3389/fpls.2015.00427 |
work_keys_str_mv | AT kurusutakamitsu plantsignalingnetworksinvolvingca2andrbohnoxmediatedrosproductionundersalinitystress AT kuchitsukazuyuki plantsignalingnetworksinvolvingca2andrbohnoxmediatedrosproductionundersalinitystress AT tadayuichi plantsignalingnetworksinvolvingca2andrbohnoxmediatedrosproductionundersalinitystress |