Cargando…
Comparative genomic and phenomic analysis of Clostridium difficile and Clostridium sordellii, two related pathogens with differing host tissue preference
BACKGROUND: Clostridium difficile and C. sordellii are two anaerobic, spore forming, gram positive pathogens with a broad host range and the ability to cause lethal infections. Despite strong similarities between the two Clostridial strains, differences in their host tissue preference place C. diffi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462011/ https://www.ncbi.nlm.nih.gov/pubmed/26059449 http://dx.doi.org/10.1186/s12864-015-1663-5 |
Sumario: | BACKGROUND: Clostridium difficile and C. sordellii are two anaerobic, spore forming, gram positive pathogens with a broad host range and the ability to cause lethal infections. Despite strong similarities between the two Clostridial strains, differences in their host tissue preference place C. difficile infections in the gastrointestinal tract and C. sordellii infections in soft tissues. RESULTS: In this study, to improve our understanding of C. sordellii and C. difficile virulence and pathogenesis, we have performed a comparative genomic and phenomic analysis of the two. The global phenomes of C. difficile and C. sordellii were compared using Biolog Phenotype microarrays. When compared to C. difficile, C. sordellii was found to better utilize more complex sources of carbon and nitrogen, including peptides. Phenotype microarray comparison also revealed that C. sordellii was better able to grow in acidic pH conditions. Using next generation sequencing technology, we determined the draft genome of C. sordellii strain 8483 and performed comparative genome analysis with C. difficile and other Clostridial genomes. Comparative genome analysis revealed the presence of several enzymes, including the urease gene cluster, specific to the C. sordellii genome that confer the ability of expanded peptide utilization and survival in acidic pH. CONCLUSIONS: The identified phenotypes of C. sordellii might be important in causing wound and vaginal infections respectively. Proteins involved in the metabolic differences between C. sordellii and C. difficile should be targets for further studies aimed at understanding C. difficile and C. sordellii infection site specificity and pathogenesis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1663-5) contains supplementary material, which is available to authorized users. |
---|