Cargando…
DNA transducer-triggered signal switch for visual colorimetric bioanalysis
A simple and versatile colorimetric biosensor has been developed for sensitive and specific detection of a wide range of biomolecules, such as oligonucleotides and aptamer-recognized targets. Combining the signal transducer and catalyzed hairpin assembly (CHA)-based signal amplification, the target...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462091/ https://www.ncbi.nlm.nih.gov/pubmed/26060886 http://dx.doi.org/10.1038/srep11190 |
_version_ | 1782375613313581056 |
---|---|
author | Chen, Wenhong Yan, Yurong Zhang, Ye Zhang, Xuemei Yin, Yibing Ding, Shijia |
author_facet | Chen, Wenhong Yan, Yurong Zhang, Ye Zhang, Xuemei Yin, Yibing Ding, Shijia |
author_sort | Chen, Wenhong |
collection | PubMed |
description | A simple and versatile colorimetric biosensor has been developed for sensitive and specific detection of a wide range of biomolecules, such as oligonucleotides and aptamer-recognized targets. Combining the signal transducer and catalyzed hairpin assembly (CHA)-based signal amplification, the target DNA binds with the hairpin DNA to form a new nucleic acid sequence and creates a toehold in the transducer for initiating the recycle amplification reaction of CHA. The catalyzed assembly process produces a large amount of G-rich DNA. In the presence of hemin, the G-rich DNA forms G-quadruplex/hemin complex and mimic horseradish peroxidase activity, which catalyzes a colorimetric reaction. Under optimal conditions, the calibration curve of synthetic target DNA has good linearity from 50 pM to 200 nM with a detection limit of 32 pM. This strategy has been successfully applied to detect S. pneumoniae as low as 156 CFU mL(−1), and shows a good specificity against closely related streptococci and major pathogenic bacteria. In addition, the developed method enables successful visual analysis of S. pneumoniae in clinical samples by the naked eye. Importantly, this method demonstrates excellent assay versatility for sensitively detecting oligonucleotides or aptamer-recognized targets. |
format | Online Article Text |
id | pubmed-4462091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-44620912015-06-12 DNA transducer-triggered signal switch for visual colorimetric bioanalysis Chen, Wenhong Yan, Yurong Zhang, Ye Zhang, Xuemei Yin, Yibing Ding, Shijia Sci Rep Article A simple and versatile colorimetric biosensor has been developed for sensitive and specific detection of a wide range of biomolecules, such as oligonucleotides and aptamer-recognized targets. Combining the signal transducer and catalyzed hairpin assembly (CHA)-based signal amplification, the target DNA binds with the hairpin DNA to form a new nucleic acid sequence and creates a toehold in the transducer for initiating the recycle amplification reaction of CHA. The catalyzed assembly process produces a large amount of G-rich DNA. In the presence of hemin, the G-rich DNA forms G-quadruplex/hemin complex and mimic horseradish peroxidase activity, which catalyzes a colorimetric reaction. Under optimal conditions, the calibration curve of synthetic target DNA has good linearity from 50 pM to 200 nM with a detection limit of 32 pM. This strategy has been successfully applied to detect S. pneumoniae as low as 156 CFU mL(−1), and shows a good specificity against closely related streptococci and major pathogenic bacteria. In addition, the developed method enables successful visual analysis of S. pneumoniae in clinical samples by the naked eye. Importantly, this method demonstrates excellent assay versatility for sensitively detecting oligonucleotides or aptamer-recognized targets. Nature Publishing Group 2015-06-10 /pmc/articles/PMC4462091/ /pubmed/26060886 http://dx.doi.org/10.1038/srep11190 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Chen, Wenhong Yan, Yurong Zhang, Ye Zhang, Xuemei Yin, Yibing Ding, Shijia DNA transducer-triggered signal switch for visual colorimetric bioanalysis |
title | DNA transducer-triggered signal switch for visual colorimetric bioanalysis |
title_full | DNA transducer-triggered signal switch for visual colorimetric bioanalysis |
title_fullStr | DNA transducer-triggered signal switch for visual colorimetric bioanalysis |
title_full_unstemmed | DNA transducer-triggered signal switch for visual colorimetric bioanalysis |
title_short | DNA transducer-triggered signal switch for visual colorimetric bioanalysis |
title_sort | dna transducer-triggered signal switch for visual colorimetric bioanalysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462091/ https://www.ncbi.nlm.nih.gov/pubmed/26060886 http://dx.doi.org/10.1038/srep11190 |
work_keys_str_mv | AT chenwenhong dnatransducertriggeredsignalswitchforvisualcolorimetricbioanalysis AT yanyurong dnatransducertriggeredsignalswitchforvisualcolorimetricbioanalysis AT zhangye dnatransducertriggeredsignalswitchforvisualcolorimetricbioanalysis AT zhangxuemei dnatransducertriggeredsignalswitchforvisualcolorimetricbioanalysis AT yinyibing dnatransducertriggeredsignalswitchforvisualcolorimetricbioanalysis AT dingshijia dnatransducertriggeredsignalswitchforvisualcolorimetricbioanalysis |