Cargando…
A conserved lysine in the estrogen receptor DNA binding domain regulates ligand activation profiles at AP-1 sites, possibly by controlling interactions with a modulating repressor
BACKGROUND: Estrogen receptors alpha and beta (ERα and ERβ) differentially activate genes with AP-1 elements. ERα activates AP-1 targets via activation functions with estrogens (the AF-dependent pathway), whereas ERβ, and a short version of ERα (ERα DBD-LBD) activate only with anti-estrogens (AF-ind...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC446215/ https://www.ncbi.nlm.nih.gov/pubmed/15132742 http://dx.doi.org/10.1186/1478-1336-2-2 |
Sumario: | BACKGROUND: Estrogen receptors alpha and beta (ERα and ERβ) differentially activate genes with AP-1 elements. ERα activates AP-1 targets via activation functions with estrogens (the AF-dependent pathway), whereas ERβ, and a short version of ERα (ERα DBD-LBD) activate only with anti-estrogens (AF-independent pathway). The DNA binding domain (DBD) plays an important role in both pathways, even though neither pathway requires ERE recognition. RESULTS: Mutations of a highly conserved DBD lysine (ERα.K206A/G), lead to super-activation of AP-1 through activation function dependent pathways, up to 200 fold. This super-activity can be elicited either through ER AFs 1 or 2, or that of a heterologous activation function (VP16). The homologous substitution in ERβ, K170A, or in ERα DBD-LBD leads to estrogen-dependent AP-1 activation and loss of the usually potent anti-estrogen effects. Each of numerous K206 substitutions in ERα, except K206R, eliminates anti-estrogen activation and this loss correlates perfectly with a loss of ability to titrate a repressive function from the RU486 bound progesterone receptor. CONCLUSION: We conclude that ER DBDs contain a complex regulatory function that influences ligand activation profiles at AP-1. This function, which requires the integrity of the conserved lysine, both allows for activation at AP-1 with anti-estrogens (with ERβ and ERα DBD-LBD), and prevents ERα from becoming superactive at AP-1 with estrogens. We discuss the possibility that a repressor interaction with the DBD both mediates the AF-independent pathway and dampens the AF dependent pathway. Mutations in the conserved lysine might, by this model, disrupt the binding or function of the repressor. |
---|