Cargando…

Dietary fat and carbohydrate have different effects on body weight, energy expenditure, glucose homeostasis and behaviour in adult cats fed to energy requirement

The effects of dietary carbohydrate and fat on feline health are not well understood. The effects of feeding diets moderately high in fat (HF; n 10; 30 % fat, 26 % carbohydrate as fed) or carbohydrate (HC; n 10; 11 % fat, 47 % carbohydrate), for 84 d, were investigated in healthy, adult cats (3·5 (s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gooding, Margaret A., Atkinson, Jim L., Duncan, Ian J. H., Niel, Lee, Shoveller, Anna K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463014/
https://www.ncbi.nlm.nih.gov/pubmed/26090098
http://dx.doi.org/10.1017/jns.2014.60
Descripción
Sumario:The effects of dietary carbohydrate and fat on feline health are not well understood. The effects of feeding diets moderately high in fat (HF; n 10; 30 % fat, 26 % carbohydrate as fed) or carbohydrate (HC; n 10; 11 % fat, 47 % carbohydrate), for 84 d, were investigated in healthy, adult cats (3·5 (sd 0·5) years). Data on indirect calorimetry, blood biomarkers, activity, play and cognition were collected at baseline, and at intervals throughout the study. Body composition was measured by dual-energy X-ray absorptiometry at baseline and on day 85. There were no significant main effects of diet on body weight and composition. When data were analysed over study day within diet, cats fed HF diets experienced a significant increase in body fat (P = 0·001) and body weight (P = 0·043) in contrast to cats consuming the HC diet that experienced no change in body fat or body weight (P = 0·762) throughout the study. Overall, energy expenditure was similar between diets (P = 0·356 (fasted), P = 0·086 (postprandial)) and respiratory quotient declined with exposure to the HF diet and increased with exposure to the HC diet (P < 0·001; fasted and postprandial). There was no difference in insulin sensitivity as an overall effect of diet (P = 0·266). Activity declined from baseline with exposure to both diets (HC: P = 0·002; HF: P = 0·01) but was not different between diets (P = 0·247). There was no effect of diet on play (P = 0·387) and cats consuming either the HF or HC diet did not successfully learn the cognitive test. Overall, cats adapt to dietary macronutrient content, and the implications of feeding HC and HF diets on risk for adiposity as driven by metabolic and behavioural mechanisms are discussed.