Cargando…
Dihydroaustrasulfone Alcohol (WA-25) Impedes Macrophage Foam Cell Formation by Regulating the Transforming Growth Factor-β1 Pathway
Atherosclerosis is considered an inflammatory disease. However, clinically used anti-atherosclerotic drugs, such as simvastatin, have many side effects. Recently, several unique marine compounds have been isolated that possess a variety of bioactivities. In a previous study, we found a synthetic pre...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463659/ https://www.ncbi.nlm.nih.gov/pubmed/25961956 http://dx.doi.org/10.3390/ijms160510507 |
Sumario: | Atherosclerosis is considered an inflammatory disease. However, clinically used anti-atherosclerotic drugs, such as simvastatin, have many side effects. Recently, several unique marine compounds have been isolated that possess a variety of bioactivities. In a previous study, we found a synthetic precursor of the marine compound (austrasulfone), which is dihydroaustrasulfone alcohol (WA-25), has anti-atherosclerotic effects in vivo. However, the detailed mechanisms remain unclear. Therefore, to clarify the mechanisms through which WA-25 exerts anti-atherosclerotic activity, we used RAW 264.7 macrophages as an in vitro model to evaluate the effects of WA-25. In lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, WA-25 significantly inhibited expression of the pro-inflammatory proteins, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In contrast, simvastatin increased the COX-2 expression compared to WA-25. In addition, WA-25 impedes foam cell formation and up-regulated the lysosomal and cyclic adenosine monophosphate (cAMP) signaling pathway. We also observed that transforming growth factor β1 (TGF-β1) was up-regulated by WA-25 and simvastatin in LPS-induced RAW 264.7 cells, and the promising anti-atherosclerosis effects of WA-25 were disrupted by blockade of TGF-β1 signaling. Besides, WA-25 might act through increasing lipolysis than through alteration of lipid export. Taken together, these data demonstrate that WA-25 may have potential as an anti-atherosclerotic drug with anti-inflammatory effects. |
---|