Cargando…

Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge

BACKGROUND: Cruciferous plants synthesize a large variety of tryptophan-derived phytoalexins in response to pathogen infection, UV irradiation, or high dosages of heavy metals. The major phytoalexins of Eutrema salsugineum (Thellungiella salsuginea), which has recently been established as an extremo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mucha, Stefanie, Walther, Dirk, Müller, Teresa M, Hincha, Dirk K, Glawischnig, Erich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464140/
https://www.ncbi.nlm.nih.gov/pubmed/26063239
http://dx.doi.org/10.1186/s12870-015-0506-5
Descripción
Sumario:BACKGROUND: Cruciferous plants synthesize a large variety of tryptophan-derived phytoalexins in response to pathogen infection, UV irradiation, or high dosages of heavy metals. The major phytoalexins of Eutrema salsugineum (Thellungiella salsuginea), which has recently been established as an extremophile model plant, are probably derivatives of indole glucosinolates, in contrast to Arabidopsis, which synthesizes characteristic camalexin from the glucosinolate precursor indole-3-acetaldoxime. RESULTS: The transcriptional response of E. salsugineum to UV irradiation and AgNO(3) was monitored by RNAseq and microarray analysis. Most transcripts (respectively 70% and 78%) were significantly differentially regulated and a large overlap between the two treatments was observed (54% of total). While core genes of the biosynthesis of aliphatic glucosinolates were repressed, tryptophan and indole glucosinolate biosynthetic genes, as well as defence-related WRKY transcription factors, were consistently upregulated. The putative Eutrema WRKY33 ortholog was functionally tested and shown to complement camalexin deficiency in Atwrky33 mutant. CONCLUSIONS: In E. salsugineum, UV irradiation or heavy metal application resulted in substantial transcriptional reprogramming. Consistently induced genes of indole glucosinolate biosynthesis and modification will serve as candidate genes for the biosynthesis of Eutrema-specific phytoalexins. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-015-0506-5) contains supplementary material, which is available to authorized users.