Cargando…
The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice
Time-dependent changes in blood-based protein biomarkers can help identify the pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464198/ https://www.ncbi.nlm.nih.gov/pubmed/26124743 http://dx.doi.org/10.3389/fneur.2015.00114 |
_version_ | 1782375912802615296 |
---|---|
author | Ahmed, Farid Plantman, Stefan Cernak, Ibolja Agoston, Denes V. |
author_facet | Ahmed, Farid Plantman, Stefan Cernak, Ibolja Agoston, Denes V. |
author_sort | Ahmed, Farid |
collection | PubMed |
description | Time-dependent changes in blood-based protein biomarkers can help identify the pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) at 2-h, 1-day, 1–week, and 1-month post-injury. We then determined the serum levels of biomarkers related to metabolism (4-HNE, HIF-1α, ceruloplasmin), vascular function (AQP1, AQP4, VEGF, vWF, Flk-1), inflammation (OPN, CINC1, fibrinogen, MIP-1a, OX-44, p38, MMP-8, MCP-1 CCR5, CRP, galectin-1), cell adhesion and the extracellular matrix (integrin α6, TIMP1, TIMP4, Ncad, connexin-43), and axonal (NF-H, Tau), neuronal (NSE, CK-BB) and glial damage (GFAP, S100β, MBP) at various post-injury time points. Our findings indicate that the exposure to a single, low-intensity blast results in metabolic and vascular changes, altered cell adhesion, and axonal and neuronal injury in the mouse model of bTBI. Interestingly, serum levels of several inflammatory and astroglial markers were either unchanged or elevated only during the acute and subacute phases of injury. Conversely, serum levels of the majority of biomarkers related to metabolic and vascular functions, cell adhesion, as well as neuronal and axonal damage remained elevated at the termination of the experiment (1 month), indicating long-term systemic and cerebral alterations due to blast. Our findings show that the exposure to a single, low-intensity blast induces complex pathological processes with distinct temporal profiles. Hence, monitoring serum biomarker levels at various post-injury time points may provide enhanced diagnostics in blast-related neurological and multi-system deficits. |
format | Online Article Text |
id | pubmed-4464198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-44641982015-06-29 The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice Ahmed, Farid Plantman, Stefan Cernak, Ibolja Agoston, Denes V. Front Neurol Neuroscience Time-dependent changes in blood-based protein biomarkers can help identify the pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) at 2-h, 1-day, 1–week, and 1-month post-injury. We then determined the serum levels of biomarkers related to metabolism (4-HNE, HIF-1α, ceruloplasmin), vascular function (AQP1, AQP4, VEGF, vWF, Flk-1), inflammation (OPN, CINC1, fibrinogen, MIP-1a, OX-44, p38, MMP-8, MCP-1 CCR5, CRP, galectin-1), cell adhesion and the extracellular matrix (integrin α6, TIMP1, TIMP4, Ncad, connexin-43), and axonal (NF-H, Tau), neuronal (NSE, CK-BB) and glial damage (GFAP, S100β, MBP) at various post-injury time points. Our findings indicate that the exposure to a single, low-intensity blast results in metabolic and vascular changes, altered cell adhesion, and axonal and neuronal injury in the mouse model of bTBI. Interestingly, serum levels of several inflammatory and astroglial markers were either unchanged or elevated only during the acute and subacute phases of injury. Conversely, serum levels of the majority of biomarkers related to metabolic and vascular functions, cell adhesion, as well as neuronal and axonal damage remained elevated at the termination of the experiment (1 month), indicating long-term systemic and cerebral alterations due to blast. Our findings show that the exposure to a single, low-intensity blast induces complex pathological processes with distinct temporal profiles. Hence, monitoring serum biomarker levels at various post-injury time points may provide enhanced diagnostics in blast-related neurological and multi-system deficits. Frontiers Media S.A. 2015-06-12 /pmc/articles/PMC4464198/ /pubmed/26124743 http://dx.doi.org/10.3389/fneur.2015.00114 Text en Copyright © 2015 Ahmed, Plantman, Cernak and Agoston. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Ahmed, Farid Plantman, Stefan Cernak, Ibolja Agoston, Denes V. The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice |
title | The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice |
title_full | The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice |
title_fullStr | The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice |
title_full_unstemmed | The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice |
title_short | The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice |
title_sort | temporal pattern of changes in serum biomarker levels reveals complex and dynamically changing pathologies after exposure to a single low-intensity blast in mice |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464198/ https://www.ncbi.nlm.nih.gov/pubmed/26124743 http://dx.doi.org/10.3389/fneur.2015.00114 |
work_keys_str_mv | AT ahmedfarid thetemporalpatternofchangesinserumbiomarkerlevelsrevealscomplexanddynamicallychangingpathologiesafterexposuretoasinglelowintensityblastinmice AT plantmanstefan thetemporalpatternofchangesinserumbiomarkerlevelsrevealscomplexanddynamicallychangingpathologiesafterexposuretoasinglelowintensityblastinmice AT cernakibolja thetemporalpatternofchangesinserumbiomarkerlevelsrevealscomplexanddynamicallychangingpathologiesafterexposuretoasinglelowintensityblastinmice AT agostondenesv thetemporalpatternofchangesinserumbiomarkerlevelsrevealscomplexanddynamicallychangingpathologiesafterexposuretoasinglelowintensityblastinmice AT ahmedfarid temporalpatternofchangesinserumbiomarkerlevelsrevealscomplexanddynamicallychangingpathologiesafterexposuretoasinglelowintensityblastinmice AT plantmanstefan temporalpatternofchangesinserumbiomarkerlevelsrevealscomplexanddynamicallychangingpathologiesafterexposuretoasinglelowintensityblastinmice AT cernakibolja temporalpatternofchangesinserumbiomarkerlevelsrevealscomplexanddynamicallychangingpathologiesafterexposuretoasinglelowintensityblastinmice AT agostondenesv temporalpatternofchangesinserumbiomarkerlevelsrevealscomplexanddynamicallychangingpathologiesafterexposuretoasinglelowintensityblastinmice |