Cargando…
Controlling false discoveries in high-dimensional situations: boosting with stability selection
BACKGROUND: Modern biotechnologies often result in high-dimensional data sets with many more variables than observations (n≪p). These data sets pose new challenges to statistical analysis: Variable selection becomes one of the most important tasks in this setting. Similar challenges arise if in mode...
Autores principales: | Hofner, Benjamin, Boccuto, Luigi, Göker, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464883/ https://www.ncbi.nlm.nih.gov/pubmed/25943565 http://dx.doi.org/10.1186/s12859-015-0575-3 |
Ejemplares similares
-
Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection
por: Mayr, Andreas, et al.
Publicado: (2016) -
Using controls to limit false discovery in the era of big data
por: Parks, Matthew M., et al.
Publicado: (2018) -
False discovery rate control in two-stage designs
por: Zehetmayer, Sonja, et al.
Publicado: (2012) -
Importance of presenting the variability of the false discovery rate control
por: Lin, Yi-Ting, et al.
Publicado: (2015) -
Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction
por: Staerk, Christian, et al.
Publicado: (2021)