Cargando…
Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle
The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultra...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465215/ https://www.ncbi.nlm.nih.gov/pubmed/26061498 http://dx.doi.org/10.1371/journal.pone.0128060 |
_version_ | 1782376076590186496 |
---|---|
author | Hindel, Stefan Sauerbrey, Anika Maaß, Marc Maderwald, Stefan Schlamann, Marc Lüdemann, Lutz |
author_facet | Hindel, Stefan Sauerbrey, Anika Maaß, Marc Maderwald, Stefan Schlamann, Marc Lüdemann, Lutz |
author_sort | Hindel, Stefan |
collection | PubMed |
description | The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the ultrasound probe, highly correlated with total flow determined by MRI, R = 0.89 and P = 10(−7). Linear regression yielded a slope of 1.2 and a y-axis intercept of 259 mL/min. The mean total volume of the investigated muscle tissue corresponds to an offset perfusion of 4.7mL/(min ⋅ 100cm(3)). The DCE-MRI technique presented here uses a blood pool contrast medium in combination with a two-compartment tracer kinetic model and allows absolute quantification of low-perfused non-cerebral organs such as muscles. |
format | Online Article Text |
id | pubmed-4465215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44652152015-06-25 Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle Hindel, Stefan Sauerbrey, Anika Maaß, Marc Maderwald, Stefan Schlamann, Marc Lüdemann, Lutz PLoS One Research Article The purpose of our study was to validate perfusion quantification in a low-perfused tissue by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with shared k-space sampling using a blood pool contrast agent. Perfusion measurements were performed in a total of seven female pigs. An ultrasonic Doppler probe was attached to the right femoral artery to determine total flow in the hind leg musculature. The femoral artery was catheterized for continuous local administration of adenosine to increase blood flow up to four times the baseline level. Three different stable perfusion levels were induced. The MR protocol included a 3D gradient-echo sequence with a temporal resolution of approximately 1.5 seconds. Before each dynamic sequence, static MR images were acquired with flip angles of 5°, 10°, 20°, and 30°. Both static and dynamic images were used to generate relaxation rate and baseline magnetization maps with a flip angle method. 0.1 mL/kg body weight of blood pool contrast medium was injected via a central venous catheter at a flow rate of 5 mL/s. The right hind leg was segmented in 3D into medial, cranial, lateral, and pelvic thigh muscles, lower leg, bones, skin, and fat. The arterial input function (AIF) was measured in the aorta. Perfusion of the different anatomic regions was calculated using a one- and a two-compartment model with delay- and dispersion-corrected AIFs. The F-test for model comparison was used to decide whether to use the results of the one- or two-compartment model fit. Total flow was calculated by integrating volume-weighted perfusion values over the whole measured region. The resulting values of delay, dispersion, blood volume, mean transit time, and flow were all in physiologically and physically reasonable ranges. In 107 of 160 ROIs, the blood signal was separated, using a two-compartment model, into a capillary and an arteriolar signal contribution, decided by the F-test. Overall flow in hind leg muscles, as measured by the ultrasound probe, highly correlated with total flow determined by MRI, R = 0.89 and P = 10(−7). Linear regression yielded a slope of 1.2 and a y-axis intercept of 259 mL/min. The mean total volume of the investigated muscle tissue corresponds to an offset perfusion of 4.7mL/(min ⋅ 100cm(3)). The DCE-MRI technique presented here uses a blood pool contrast medium in combination with a two-compartment tracer kinetic model and allows absolute quantification of low-perfused non-cerebral organs such as muscles. Public Library of Science 2015-06-10 /pmc/articles/PMC4465215/ /pubmed/26061498 http://dx.doi.org/10.1371/journal.pone.0128060 Text en © 2015 Hindel et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hindel, Stefan Sauerbrey, Anika Maaß, Marc Maderwald, Stefan Schlamann, Marc Lüdemann, Lutz Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle |
title | Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle |
title_full | Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle |
title_fullStr | Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle |
title_full_unstemmed | Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle |
title_short | Validation of Perfusion Quantification with 3D Gradient Echo Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Blood Pool Contrast Agent in Skeletal Swine Muscle |
title_sort | validation of perfusion quantification with 3d gradient echo dynamic contrast-enhanced magnetic resonance imaging using a blood pool contrast agent in skeletal swine muscle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465215/ https://www.ncbi.nlm.nih.gov/pubmed/26061498 http://dx.doi.org/10.1371/journal.pone.0128060 |
work_keys_str_mv | AT hindelstefan validationofperfusionquantificationwith3dgradientechodynamiccontrastenhancedmagneticresonanceimagingusingabloodpoolcontrastagentinskeletalswinemuscle AT sauerbreyanika validationofperfusionquantificationwith3dgradientechodynamiccontrastenhancedmagneticresonanceimagingusingabloodpoolcontrastagentinskeletalswinemuscle AT maaßmarc validationofperfusionquantificationwith3dgradientechodynamiccontrastenhancedmagneticresonanceimagingusingabloodpoolcontrastagentinskeletalswinemuscle AT maderwaldstefan validationofperfusionquantificationwith3dgradientechodynamiccontrastenhancedmagneticresonanceimagingusingabloodpoolcontrastagentinskeletalswinemuscle AT schlamannmarc validationofperfusionquantificationwith3dgradientechodynamiccontrastenhancedmagneticresonanceimagingusingabloodpoolcontrastagentinskeletalswinemuscle AT ludemannlutz validationofperfusionquantificationwith3dgradientechodynamiccontrastenhancedmagneticresonanceimagingusingabloodpoolcontrastagentinskeletalswinemuscle |