Cargando…
In vivo tracking of human placenta derived mesenchymal stem cells in nude mice via(14)C-TdR labeling
BACKGROUND: In order to shed light on the regenerative mechanism of mesenchymal stem cells (MSCs) in vivo, the bio-distribution profile of implanted cells using a stable and long-term tracking method is needed. We herein investigated the bio-distribution of human placental deciduas basalis derived M...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465458/ https://www.ncbi.nlm.nih.gov/pubmed/26070459 http://dx.doi.org/10.1186/s12896-015-0174-4 |
Sumario: | BACKGROUND: In order to shed light on the regenerative mechanism of mesenchymal stem cells (MSCs) in vivo, the bio-distribution profile of implanted cells using a stable and long-term tracking method is needed. We herein investigated the bio-distribution of human placental deciduas basalis derived MSCs (termed as PDB-MSCs) in nude mice after intravenous injection by carbon radioisotope labeling thymidine ((14)C-TdR), which is able to incorporate into new DNA strands during cell replication. RESULTS: The proliferation rate and radioactive emission of human PDB-MSCs after labeled with different concentrations of (14)C-TdR were measured. PDB-MSCs labeled with 1 μCi possessed high radioactivity, and the biological characteristics (i.e. morphology, colony forming ability, differentiation capabilities, karyotype and cell cycle) showed no significant changes after labeling. Thus, 1 μCi was the optimal concentration in this experimental design. In nude mice, 1 × 10(6)(14)C-TdR-labeled PDB-MSCs were injected intravenously and the organs were collected at days 1, 2, 3, 5, 30 and 180 after injection, respectively. Radiolabeled PDB-MSCs were found mainly in the lung, liver, spleen, stomach and left femur of the recipient nude mice at the whole observation period. CONCLUSIONS: This work provided solid evidence that (14)C-TdR labeling did not alter the biological characteristics of human placental MSCs, and that this labeling method has potential to decrease the signal from non-infused or dead cells for cell tracking. Therefore, this labeling technique can be utilized to quantify the infused cells after long-term follow-up in pre-clinical studies. |
---|