Cargando…
Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data
OBJECTIVE: Multivariate data sets often differ in several factors or derived statistical parameters, which have to be selected for a valid interpretation. Basing this selection on traditional statistical limits leads occasionally to the perception of losing information from a data set. This paper pr...
Autores principales: | Ultsch, Alfred, Lötsch, Jörn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465645/ https://www.ncbi.nlm.nih.gov/pubmed/26061064 http://dx.doi.org/10.1371/journal.pone.0129767 |
Ejemplares similares
-
Recursive computed ABC (cABC) analysis as a precise method for reducing machine learning based feature sets to their minimum informative size
por: Lötsch, Jörn, et al.
Publicado: (2023) -
Robust Classification Using Posterior Probability Threshold Computation Followed by Voronoi Cell Based Class Assignment Circumventing Pitfalls of Bayesian Analysis of Biomedical Data
por: Ultsch, Alfred, et al.
Publicado: (2022) -
Euclidean distance-optimized data transformation for cluster analysis in biomedical data (EDOtrans)
por: Ultsch, Alfred, et al.
Publicado: (2022) -
Current Projection Methods-Induced Biases at Subgroup Detection for Machine-Learning Based Data-Analysis of Biomedical Data
por: Lötsch, Jörn, et al.
Publicado: (2019) -
Machine-learned cluster identification in high-dimensional data
por: Ultsch, Alfred, et al.
Publicado: (2017)