Cargando…
Fast Waves at the Base of the Cochlea
Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465671/ https://www.ncbi.nlm.nih.gov/pubmed/26062000 http://dx.doi.org/10.1371/journal.pone.0129556 |
_version_ | 1782376113689853952 |
---|---|
author | Recio-Spinoso, Alberto Rhode, William S. |
author_facet | Recio-Spinoso, Alberto Rhode, William S. |
author_sort | Recio-Spinoso, Alberto |
collection | PubMed |
description | Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy’s results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy’s theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves. |
format | Online Article Text |
id | pubmed-4465671 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-44656712015-06-25 Fast Waves at the Base of the Cochlea Recio-Spinoso, Alberto Rhode, William S. PLoS One Research Article Georg von Békésy observed that the onset times of responses to brief-duration stimuli vary as a function of distance from the stapes, with basal regions starting to move earlier than apical ones. He noticed that the speed of signal propagation along the cochlea is slow when compared with the speed of sound in water. Fast traveling waves have been recorded in the cochlea, but their existence is interpreted as the result of an experiment artifact. Accounts of the timing of vibration onsets at the base of the cochlea generally agree with Békésy’s results. Some authors, however, have argued that the measured delays are too short for consistency with Békésy’s theory. To investigate the speed of the traveling wave at the base of the cochlea, we analyzed basilar membrane (BM) responses to clicks recorded at several locations in the base of the chinchilla cochlea. The initial component of the BM response matches remarkably well the initial component of the stapes response, after a 4-μs delay of the latter. A similar conclusion is reached by analyzing onset times of time-domain gain functions, which correspond to BM click responses normalized by middle-ear input. Our results suggest that BM responses to clicks arise from a combination of fast and slow traveling waves. Public Library of Science 2015-06-10 /pmc/articles/PMC4465671/ /pubmed/26062000 http://dx.doi.org/10.1371/journal.pone.0129556 Text en © 2015 Recio-Spinoso, Rhode http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Recio-Spinoso, Alberto Rhode, William S. Fast Waves at the Base of the Cochlea |
title | Fast Waves at the Base of the Cochlea |
title_full | Fast Waves at the Base of the Cochlea |
title_fullStr | Fast Waves at the Base of the Cochlea |
title_full_unstemmed | Fast Waves at the Base of the Cochlea |
title_short | Fast Waves at the Base of the Cochlea |
title_sort | fast waves at the base of the cochlea |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465671/ https://www.ncbi.nlm.nih.gov/pubmed/26062000 http://dx.doi.org/10.1371/journal.pone.0129556 |
work_keys_str_mv | AT reciospinosoalberto fastwavesatthebaseofthecochlea AT rhodewilliams fastwavesatthebaseofthecochlea |