Cargando…

Regulation of DMT1 on Bone Microstructure in Type 2 Diabetes

Diabetic osteoporosis is gradually attracted people's attention. However, the process of bone microstructure changes in diabetic patients, and the exact mechanism of osteoblast iron overload are unclear. Therefore, the present study aimed to explore the function of DMT1 in the pathological proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Wei-Lin, Meng, Hong-Zheng, Yang, Mao-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466406/
https://www.ncbi.nlm.nih.gov/pubmed/26078704
http://dx.doi.org/10.7150/ijms.11986
Descripción
Sumario:Diabetic osteoporosis is gradually attracted people's attention. However, the process of bone microstructure changes in diabetic patients, and the exact mechanism of osteoblast iron overload are unclear. Therefore, the present study aimed to explore the function of DMT1 in the pathological process of diabetic osteoporosis. We build the type two diabetes osteoporosis models with SD rats and Belgrade rats, respectively. Difference expression of DMT1 was detected by using the method of immunohistochemistry and western blotting. Detection of bone microstructure and biomechanics and iron content for each group of samples. We found that DMT1 expression in type 2 diabetic rats was higher than that in normal rats. The bone biomechanical indices and bone microstructure in the rat model deficient in DMT1 was significantly better than that in the normal diabetic model. The loss of DMT1 can reduce the content of iron in bone. These findings indicate that DMT1 expression was enhanced in the bone tissue of type 2 diabetic rats, and plays an important role in the pathological process of diabetic osteoporosis. Moreover, DMT1 may be a potential therapeutic target for diabetic osteoporosis.