Cargando…
Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway
Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is ac...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466741/ https://www.ncbi.nlm.nih.gov/pubmed/25995364 http://dx.doi.org/10.1073/pnas.1415845112 |
_version_ | 1782376276987740160 |
---|---|
author | Rei, Damien Mason, Xenos Seo, Jinsoo Gräff, Johannes Rudenko, Andrii Wang, Jun Rueda, Richard Siegert, Sandra Cho, Sukhee Canter, Rebecca G. Mungenast, Alison E. Deisseroth, Karl Tsai, Li-Huei |
author_facet | Rei, Damien Mason, Xenos Seo, Jinsoo Gräff, Johannes Rudenko, Andrii Wang, Jun Rueda, Richard Siegert, Sandra Cho, Sukhee Canter, Rebecca G. Mungenast, Alison E. Deisseroth, Karl Tsai, Li-Huei |
author_sort | Rei, Damien |
collection | PubMed |
description | Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation. |
format | Online Article Text |
id | pubmed-4466741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-44667412015-06-18 Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway Rei, Damien Mason, Xenos Seo, Jinsoo Gräff, Johannes Rudenko, Andrii Wang, Jun Rueda, Richard Siegert, Sandra Cho, Sukhee Canter, Rebecca G. Mungenast, Alison E. Deisseroth, Karl Tsai, Li-Huei Proc Natl Acad Sci U S A Biological Sciences Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation. National Academy of Sciences 2015-06-09 2015-05-20 /pmc/articles/PMC4466741/ /pubmed/25995364 http://dx.doi.org/10.1073/pnas.1415845112 Text en Freely available online through the PNAS open access option. |
spellingShingle | Biological Sciences Rei, Damien Mason, Xenos Seo, Jinsoo Gräff, Johannes Rudenko, Andrii Wang, Jun Rueda, Richard Siegert, Sandra Cho, Sukhee Canter, Rebecca G. Mungenast, Alison E. Deisseroth, Karl Tsai, Li-Huei Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway |
title | Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway |
title_full | Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway |
title_fullStr | Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway |
title_full_unstemmed | Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway |
title_short | Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway |
title_sort | basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/cdk5-dependent pathway |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466741/ https://www.ncbi.nlm.nih.gov/pubmed/25995364 http://dx.doi.org/10.1073/pnas.1415845112 |
work_keys_str_mv | AT reidamien basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT masonxenos basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT seojinsoo basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT graffjohannes basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT rudenkoandrii basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT wangjun basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT ruedarichard basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT siegertsandra basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT chosukhee basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT canterrebeccag basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT mungenastalisone basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT deisserothkarl basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway AT tsailihuei basolateralamygdalabidirectionallymodulatesstressinducedhippocampallearningandmemorydeficitsthroughap25cdk5dependentpathway |