Cargando…
Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research
BACKGROUND: Current biomedical research needs to leverage and exploit the large amount of information reported in scientific publications. Automated text mining approaches, in particular those aimed at finding relationships between entities, are key for identification of actionable knowledge from fr...
Autores principales: | Bravo, Àlex, Piñero, Janet, Queralt-Rosinach, Núria, Rautschka, Michael, Furlong, Laura I |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466840/ https://www.ncbi.nlm.nih.gov/pubmed/25886734 http://dx.doi.org/10.1186/s12859-015-0472-9 |
Ejemplares similares
-
DisGeNET-RDF: harnessing the innovative power of the Semantic Web to explore the genetic basis of diseases
por: Queralt-Rosinach, Núria, et al.
Publicado: (2016) -
DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes
por: Piñero, Janet, et al.
Publicado: (2015) -
DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants
por: Piñero, Janet, et al.
Publicado: (2017) -
A Knowledge-Driven Approach to Extract Disease-Related Biomarkers from the Literature
por: Bravo, À., et al.
Publicado: (2014) -
A proof-of-concept study of extracting patient histories for rare/intractable diseases from social media
por: Yamaguchi, Atsuko, et al.
Publicado: (2020)