Cargando…
Alchembed: A Computational Method for Incorporating Multiple Proteins into Complex Lipid Geometries
[Image: see text] A necessary step prior to starting any membrane protein computer simulation is the creation of a well-packed configuration of protein(s) and lipids. Here, we demonstrate a method, alchembed, that can simultaneously and rapidly embed multiple proteins into arrangements of lipids des...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467903/ https://www.ncbi.nlm.nih.gov/pubmed/26089745 http://dx.doi.org/10.1021/ct501111d |
Sumario: | [Image: see text] A necessary step prior to starting any membrane protein computer simulation is the creation of a well-packed configuration of protein(s) and lipids. Here, we demonstrate a method, alchembed, that can simultaneously and rapidly embed multiple proteins into arrangements of lipids described using either atomistic or coarse-grained force fields. During a short simulation, the interactions between the protein(s) and lipids are gradually switched on using a soft-core van der Waals potential. We validate the method on a range of membrane proteins and determine the optimal soft-core parameters required to insert membrane proteins. Since all of the major biomolecular codes include soft-core van der Waals potentials, no additional code is required to apply this method. A tutorial is included in the Supporting Information. |
---|