Cargando…
Development of a Mild Viral Expression System for Gain-Of-Function Study of Phytoplasma Effector In Planta
PHYL1 and SAP54 are orthologs of pathogenic effectors of Aster yellow witches’-broom (AYWB) phytoplasma and Peanut witches’-broom (PnWB) phytoplasma, respectively. These effectors cause virescence and phyllody symptoms (hereafter leafy flower) in phytoplasma-infected plants. T(0) lines of transgenic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468105/ https://www.ncbi.nlm.nih.gov/pubmed/26076458 http://dx.doi.org/10.1371/journal.pone.0130139 |
Sumario: | PHYL1 and SAP54 are orthologs of pathogenic effectors of Aster yellow witches’-broom (AYWB) phytoplasma and Peanut witches’-broom (PnWB) phytoplasma, respectively. These effectors cause virescence and phyllody symptoms (hereafter leafy flower) in phytoplasma-infected plants. T(0) lines of transgenic Arabidopsis expressing the PHYL1 or SAP54 genes (PHYL1 or SAP54 plants) show a leafy flower phenotype and result in seedless, suggesting that PHYL1 and SAP54 interfere with reproduction stage that restrict gain-of-function studies in the next generation of transgenic plants. Turnip mosaic virus (TuMV) mild strain (TuGK) has an Arg182Lys mutation in the helper-component proteinase (HC-Pro(R182K)) that blocks suppression of the miRNA pathway and prevents symptom development in TuGK-infected plants. We exploited TuGK as a viral vector for gain-of-function studies of PHYL1 and SAP54 in Arabidopsis plants. TuGK-PHYL1- and TuGK-SAP54-infected Arabidopsis plants produced identical leafy flower phenotypes and similar gene expression profiles as PHYL1 and SAP54 plants. In addition, the leafy flower formation rate was enhanced in TuGK-PHYL1- or TuGK-SAP54-infected Arabidopsis plants that compared with the T(0) lines of PHYL1 plants. These results provide more evidence and novel directions for further studying the mechanism of PHYL1/SAP54-mediated leafy flower development. In addition, the TuGK vector is a good alternative in transgenic plant approaches for rapid gene expression in gain-of-function studies. |
---|