Cargando…
A Robust Supervised Variable Selection for Noisy High-Dimensional Data
The Minimum Redundancy Maximum Relevance (MRMR) approach to supervised variable selection represents a successful methodology for dimensionality reduction, which is suitable for high-dimensional data observed in two or more different groups. Various available versions of the MRMR approach have been...
Autores principales: | Kalina, Jan, Schlenker, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468284/ https://www.ncbi.nlm.nih.gov/pubmed/26137474 http://dx.doi.org/10.1155/2015/320385 |
Ejemplares similares
-
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
por: Reinbold, Patrick A. K., et al.
Publicado: (2021) -
Stability selection enables robust learning of differential equations from limited noisy data
por: Maddu, Suryanarayana, et al.
Publicado: (2022) -
Robust speaker recognition in noisy environments
por: Rao, K Sreenivasa, et al.
Publicado: (2014) -
A robust penalized method for the analysis of noisy DNA copy number data
por: Gao, Xiaoli, et al.
Publicado: (2010) -
Deep kernel learning of dynamical models from high-dimensional noisy data
por: Botteghi, Nicolò, et al.
Publicado: (2022)