Cargando…
Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia()()
We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs), and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS). Overall, we investigated 56 patients and we observed higher levels of ECFCs i...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468365/ https://www.ncbi.nlm.nih.gov/pubmed/26025663 http://dx.doi.org/10.1016/j.neo.2015.04.001 |
_version_ | 1782376502022635520 |
---|---|
author | Teofili, Luciana Martini, Maurizio Nuzzolo, Eugenia Rosa Capodimonti, Sara Iachininoto, Maria Grazia Cocomazzi, Alessandra Fabiani, Emiliano Voso, Maria Teresa Larocca, Luigi M. |
author_facet | Teofili, Luciana Martini, Maurizio Nuzzolo, Eugenia Rosa Capodimonti, Sara Iachininoto, Maria Grazia Cocomazzi, Alessandra Fabiani, Emiliano Voso, Maria Teresa Larocca, Luigi M. |
author_sort | Teofili, Luciana |
collection | PubMed |
description | We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs), and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS). Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34 + cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b + and CD41 + cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt) pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia. |
format | Online Article Text |
id | pubmed-4468365 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Neoplasia Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-44683652015-06-16 Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia()() Teofili, Luciana Martini, Maurizio Nuzzolo, Eugenia Rosa Capodimonti, Sara Iachininoto, Maria Grazia Cocomazzi, Alessandra Fabiani, Emiliano Voso, Maria Teresa Larocca, Luigi M. Neoplasia Article We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs), and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS). Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34 + cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b + and CD41 + cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt) pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia. Neoplasia Press 2015-05-27 /pmc/articles/PMC4468365/ /pubmed/26025663 http://dx.doi.org/10.1016/j.neo.2015.04.001 Text en © 2015 The Authors. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Teofili, Luciana Martini, Maurizio Nuzzolo, Eugenia Rosa Capodimonti, Sara Iachininoto, Maria Grazia Cocomazzi, Alessandra Fabiani, Emiliano Voso, Maria Teresa Larocca, Luigi M. Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia()() |
title | Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia()() |
title_full | Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia()() |
title_fullStr | Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia()() |
title_full_unstemmed | Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia()() |
title_short | Endothelial Progenitor Cell Dysfunction in Myelodysplastic Syndromes: Possible Contribution of a Defective Vascular Niche to Myelodysplasia()() |
title_sort | endothelial progenitor cell dysfunction in myelodysplastic syndromes: possible contribution of a defective vascular niche to myelodysplasia()() |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468365/ https://www.ncbi.nlm.nih.gov/pubmed/26025663 http://dx.doi.org/10.1016/j.neo.2015.04.001 |
work_keys_str_mv | AT teofililuciana endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia AT martinimaurizio endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia AT nuzzoloeugeniarosa endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia AT capodimontisara endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia AT iachininotomariagrazia endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia AT cocomazzialessandra endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia AT fabianiemiliano endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia AT vosomariateresa endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia AT laroccaluigim endothelialprogenitorcelldysfunctioninmyelodysplasticsyndromespossiblecontributionofadefectivevascularnichetomyelodysplasia |