Cargando…

Dehydration-mediated cluster formation of nanoparticles

Drying procedure is a powerful method to modulate the bottom-up assembly of basic building component. The initially weak attraction between the components screened in a solution strengthens as the solvent evaporates, organizing the components into structures. Drying is process-dependent, irreversibl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahn, Sungsook, Joon Lee, Sang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468418/
https://www.ncbi.nlm.nih.gov/pubmed/26077841
http://dx.doi.org/10.1038/srep11383
Descripción
Sumario:Drying procedure is a powerful method to modulate the bottom-up assembly of basic building component. The initially weak attraction between the components screened in a solution strengthens as the solvent evaporates, organizing the components into structures. Drying is process-dependent, irreversible, and nonequilibrated, thus the mechanism and the dynamics are influenced by many factors. Therefore, the interaction of the solvent and the elements during the drying procedure as well as the resulting pattern formations are strongly related. Nonetheless still many things are open in questions in terms of their dynamics. In this study, nanoscale dehydration procedure is experimentally investigated using a nanoparticle (NP) model system. The role of water is verified in a single NP scale and the patterns of collective NP clusters are determined. Stepwise drying procedures are proposed based on the location from which water is removed. Effective water exodus from a unit NP surface enhances the attractive interaction in nanoscale and induces heterogeneous distribution in microscale. This study provides fundamental proof of systematic relation between the dehydration process and the resultant cluster patterns in hierarchical multiscales.