Cargando…

Application and Analysis of Biological Electrospray in Tissue Engineering

Nan-fiber scaffolds are suitable tools for tissue engineering. Electro spinning materials together with cells presents not adequate to obtain a high cellular zing tissue constructs as the shear force, tensile force, and other physical effects excited in the electro spinning process, which are harmfu...

Descripción completa

Detalles Bibliográficos
Autores principales: Yunmin, Ma, Yuanyuan, Liu, Haiping, Chen, Qingxi, Hu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Open 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468589/
https://www.ncbi.nlm.nih.gov/pubmed/26089992
http://dx.doi.org/10.2174/1874120701509010133
Descripción
Sumario:Nan-fiber scaffolds are suitable tools for tissue engineering. Electro spinning materials together with cells presents not adequate to obtain a high cellular zing tissue constructs as the shear force, tensile force, and other physical effects excited in the electro spinning process, which are harmful to cellular differentiation, development and function. However, this limitation has been overcome by a micro integration system of simultaneously bio-electro spraying human adipose stem cells (ASCs) and electro spinning Polyvinyl alcohol (PVA). Then it was compared to the single electro spinning nan-fiber scaffolds in relation to cell viability, which showed that the scaffolds by micro integration approach has a larger number of surviving cells and more suitable for cell growth and proliferation. In addition, the relationship between different parameters of biological electrospray (voltage, flow rate and distance of the needle from the collecting board) and droplet size of cell suspension was elucidated and the droplets with a near-mono distribution (<50um) could be generated to deposit a single living cell within a droplet. The association of bio-electro spraying with electro spinning (a scaffold preparation technique) has been demonstrated to be a promising and suitable tissue engineering approach in producing nan-fiber based three-dimensional (3-D) cell seeded scaffolds.