Cargando…
Automated Feature Extraction in Brain Tumor by Magnetic Resonance Imaging Using Gaussian Mixture Models
This paper presents a novel method for Glioblastoma (GBM) feature extraction based on Gaussian mixture model (GMM) features using MRI. We addressed the task of the new features to identify GBM using T1 and T2 weighted images (T1-WI, T2-WI) and Fluid-Attenuated Inversion Recovery (FLAIR) MR images. A...
Autor principal: | Chaddad, Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469084/ https://www.ncbi.nlm.nih.gov/pubmed/26136774 http://dx.doi.org/10.1155/2015/868031 |
Ejemplares similares
-
Corrigendum to “Automated Feature Extraction in Brain Tumor by Magnetic Resonance Imaging Using Gaussian Mixture Models”
por: Chaddad, Ahmad, et al.
Publicado: (2017) -
Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images
por: Chen, Yunjie, et al.
Publicado: (2016) -
Gaussian mixture model for texture characterization with application to brain DTI images
por: Moraru, Luminita, et al.
Publicado: (2019) -
Spike sorting with Gaussian mixture models
por: Souza, Bryan C., et al.
Publicado: (2019) -
Mixtures of Conditional Gaussian Scale Mixtures Applied to Multiscale Image Representations
por: Theis, Lucas, et al.
Publicado: (2012)