Cargando…

How a homolog of high-fidelity replicases conducts mutagenic DNA synthesis

All DNA replicases achieve high fidelity by a conserved mechanism, but each translesion polymerase carries out mutagenic DNA synthesis in its own way. Here we report crystal structures of human DNA polymerase ν (Pol ν), which is homologous to high-fidelity replicases and yet error-prone. Instead of...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Young-Sam, Gao, Yang, Yang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469489/
https://www.ncbi.nlm.nih.gov/pubmed/25775266
http://dx.doi.org/10.1038/nsmb.2985
Descripción
Sumario:All DNA replicases achieve high fidelity by a conserved mechanism, but each translesion polymerase carries out mutagenic DNA synthesis in its own way. Here we report crystal structures of human DNA polymerase ν (Pol ν), which is homologous to high-fidelity replicases and yet error-prone. Instead of a simple open-to-closed movement of the O helix upon binding of a correct incoming nucleotide, Pol ν has a different open state and requires the finger domain to swing sideways and undergo both opening and closing motions to accommodate the nascent base pair. A single amino acid substitution in the O-helix of the finger domain improves the fidelity of Pol ν nearly ten-fold. A unique cavity and the flexibility of the thumb domain allow Pol ν to generate and accommodate a looped-out primer strand. Primer loopout may be a mechanism for DNA trinucloetide-repeat expansion.