Cargando…

Impact of particle size, temperature and humic acid on sorption of uranium in agricultural soils of Punjab

Batch experiments were conducted to study the sorption of uranium (U) onto soil in deionised water as a function of its dosage, temperature and humic acid (HA). Furthermore, soils were characterized for particle sizes in the form of sand (>63 µm), silt (>2–<63 µm) and clay (<2 µm). The t...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Ajay, Rout, Sabyasachi, Mishra, Manish Kumar, Karpe, Rupali, Ravi, Pazhayath Mana, Tripathi, Raj Mangal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469604/
https://www.ncbi.nlm.nih.gov/pubmed/26090309
http://dx.doi.org/10.1186/s40064-015-1051-2
Descripción
Sumario:Batch experiments were conducted to study the sorption of uranium (U) onto soil in deionised water as a function of its dosage, temperature and humic acid (HA). Furthermore, soils were characterized for particle sizes in the form of sand (>63 µm), silt (>2–<63 µm) and clay (<2 µm). The textural analysis revealed that soils were admixture of mainly sand and silt along with a small abundance of clay. X-ray diffraction analysis indicates that clay factions ranging from 2.8 to 5% dominated by quartz and montmorillonite. Experimental results indicated that soil with high abundance of clays and low sand content has relatively high U sorption which could be due to availability of high exchange surfaces for metal ions. However, at low concentration of HA, sorption of U was maximum and thereby decreased as the HA concentration increased. The maximum sorption may be due to increase in the negative active surface sites on HA and further decrease could be attributed to saturation of sorption site and surface precipitation. Conversely, the thermodynamic data suggested that the sorption is spontaneous and enhanced at higher temperature.