Cargando…

Orientation Maps in V1 and Non-Euclidean Geometry

In the primary visual cortex, the processing of information uses the distribution of orientations in the visual input: neurons react to some orientations in the stimulus more than to others. In many species, orientation preference is mapped in a remarkable way on the cortical surface, and this organ...

Descripción completa

Detalles Bibliográficos
Autor principal: Afgoustidis, Alexandre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469697/
https://www.ncbi.nlm.nih.gov/pubmed/26082007
http://dx.doi.org/10.1186/s13408-015-0024-7
_version_ 1782376651076665344
author Afgoustidis, Alexandre
author_facet Afgoustidis, Alexandre
author_sort Afgoustidis, Alexandre
collection PubMed
description In the primary visual cortex, the processing of information uses the distribution of orientations in the visual input: neurons react to some orientations in the stimulus more than to others. In many species, orientation preference is mapped in a remarkable way on the cortical surface, and this organization of the neural population seems to be important for visual processing. Now, existing models for the geometry and development of orientation preference maps in higher mammals make a crucial use of symmetry considerations. In this paper, we consider probabilistic models for V1 maps from the point of view of group theory; we focus on Gaussian random fields with symmetry properties and review the probabilistic arguments that allow one to estimate pinwheel densities and predict the observed value of π. Then, in order to test the relevance of general symmetry arguments and to introduce methods which could be of use in modeling curved regions, we reconsider this model in the light of group representation theory, the canonical mathematics of symmetry. We show that through the Plancherel decomposition of the space of complex-valued maps on the Euclidean plane, each infinite-dimensional irreducible unitary representation of the special Euclidean group yields a unique V1-like map, and we use representation theory as a symmetry-based toolbox to build orientation maps adapted to the most famous non-Euclidean geometries, viz. spherical and hyperbolic geometry. We find that most of the dominant traits of V1 maps are preserved in these; we also study the link between symmetry and the statistics of singularities in orientation maps, and show what the striking quantitative characteristics observed in animals become in our curved models.
format Online
Article
Text
id pubmed-4469697
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-44696972015-06-18 Orientation Maps in V1 and Non-Euclidean Geometry Afgoustidis, Alexandre J Math Neurosci Research In the primary visual cortex, the processing of information uses the distribution of orientations in the visual input: neurons react to some orientations in the stimulus more than to others. In many species, orientation preference is mapped in a remarkable way on the cortical surface, and this organization of the neural population seems to be important for visual processing. Now, existing models for the geometry and development of orientation preference maps in higher mammals make a crucial use of symmetry considerations. In this paper, we consider probabilistic models for V1 maps from the point of view of group theory; we focus on Gaussian random fields with symmetry properties and review the probabilistic arguments that allow one to estimate pinwheel densities and predict the observed value of π. Then, in order to test the relevance of general symmetry arguments and to introduce methods which could be of use in modeling curved regions, we reconsider this model in the light of group representation theory, the canonical mathematics of symmetry. We show that through the Plancherel decomposition of the space of complex-valued maps on the Euclidean plane, each infinite-dimensional irreducible unitary representation of the special Euclidean group yields a unique V1-like map, and we use representation theory as a symmetry-based toolbox to build orientation maps adapted to the most famous non-Euclidean geometries, viz. spherical and hyperbolic geometry. We find that most of the dominant traits of V1 maps are preserved in these; we also study the link between symmetry and the statistics of singularities in orientation maps, and show what the striking quantitative characteristics observed in animals become in our curved models. Springer Berlin Heidelberg 2015-06-17 /pmc/articles/PMC4469697/ /pubmed/26082007 http://dx.doi.org/10.1186/s13408-015-0024-7 Text en © Afgoustidis 2015 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Afgoustidis, Alexandre
Orientation Maps in V1 and Non-Euclidean Geometry
title Orientation Maps in V1 and Non-Euclidean Geometry
title_full Orientation Maps in V1 and Non-Euclidean Geometry
title_fullStr Orientation Maps in V1 and Non-Euclidean Geometry
title_full_unstemmed Orientation Maps in V1 and Non-Euclidean Geometry
title_short Orientation Maps in V1 and Non-Euclidean Geometry
title_sort orientation maps in v1 and non-euclidean geometry
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469697/
https://www.ncbi.nlm.nih.gov/pubmed/26082007
http://dx.doi.org/10.1186/s13408-015-0024-7
work_keys_str_mv AT afgoustidisalexandre orientationmapsinv1andnoneuclideangeometry