Cargando…
A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making
There is significant evidence that in addition to reward-punishment based decision making, the Basal Ganglia (BG) contributes to risk-based decision making (Balasubramani et al., 2014). Despite this evidence, little is known about the computational principles and neural correlates of risk computatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469836/ https://www.ncbi.nlm.nih.gov/pubmed/26136679 http://dx.doi.org/10.3389/fncom.2015.00076 |
_version_ | 1782376669383753728 |
---|---|
author | Balasubramani, Pragathi P. Chakravarthy, V. Srinivasa Ravindran, Balaraman Moustafa, Ahmed A. |
author_facet | Balasubramani, Pragathi P. Chakravarthy, V. Srinivasa Ravindran, Balaraman Moustafa, Ahmed A. |
author_sort | Balasubramani, Pragathi P. |
collection | PubMed |
description | There is significant evidence that in addition to reward-punishment based decision making, the Basal Ganglia (BG) contributes to risk-based decision making (Balasubramani et al., 2014). Despite this evidence, little is known about the computational principles and neural correlates of risk computation in this subcortical system. We have previously proposed a reinforcement learning (RL)-based model of the BG that simulates the interactions between dopamine (DA) and serotonin (5HT) in a diverse set of experimental studies including reward, punishment and risk based decision making (Balasubramani et al., 2014). Starting with the classical idea that the activity of mesencephalic DA represents reward prediction error, the model posits that serotoninergic activity in the striatum controls risk-prediction error. Our prior model of the BG was an abstract model that did not incorporate anatomical and cellular-level data. In this work, we expand the earlier model into a detailed network model of the BG and demonstrate the joint contributions of DA-5HT in risk and reward-punishment sensitivity. At the core of the proposed network model is the following insight regarding cellular correlates of value and risk computation. Just as DA D1 receptor (D1R) expressing medium spiny neurons (MSNs) of the striatum were thought to be the neural substrates for value computation, we propose that DA D1R and D2R co-expressing MSNs are capable of computing risk. Though the existence of MSNs that co-express D1R and D2R are reported by various experimental studies, prior existing computational models did not include them. Ours is the first model that accounts for the computational possibilities of these co-expressing D1R-D2R MSNs, and describes how DA and 5HT mediate activity in these classes of neurons (D1R-, D2R-, D1R-D2R- MSNs). Starting from the assumption that 5HT modulates all MSNs, our study predicts significant modulatory effects of 5HT on D2R and co-expressing D1R-D2R MSNs which in turn explains the multifarious functions of 5HT in the BG. The experiments simulated in the present study relates 5HT to risk sensitivity and reward-punishment learning. Furthermore, our model is shown to capture reward-punishment and risk based decision making impairment in Parkinson's Disease (PD). The model predicts that optimizing 5HT levels along with DA medications might be essential for improving the patients' reward-punishment learning deficits. |
format | Online Article Text |
id | pubmed-4469836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-44698362015-07-01 A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making Balasubramani, Pragathi P. Chakravarthy, V. Srinivasa Ravindran, Balaraman Moustafa, Ahmed A. Front Comput Neurosci Neuroscience There is significant evidence that in addition to reward-punishment based decision making, the Basal Ganglia (BG) contributes to risk-based decision making (Balasubramani et al., 2014). Despite this evidence, little is known about the computational principles and neural correlates of risk computation in this subcortical system. We have previously proposed a reinforcement learning (RL)-based model of the BG that simulates the interactions between dopamine (DA) and serotonin (5HT) in a diverse set of experimental studies including reward, punishment and risk based decision making (Balasubramani et al., 2014). Starting with the classical idea that the activity of mesencephalic DA represents reward prediction error, the model posits that serotoninergic activity in the striatum controls risk-prediction error. Our prior model of the BG was an abstract model that did not incorporate anatomical and cellular-level data. In this work, we expand the earlier model into a detailed network model of the BG and demonstrate the joint contributions of DA-5HT in risk and reward-punishment sensitivity. At the core of the proposed network model is the following insight regarding cellular correlates of value and risk computation. Just as DA D1 receptor (D1R) expressing medium spiny neurons (MSNs) of the striatum were thought to be the neural substrates for value computation, we propose that DA D1R and D2R co-expressing MSNs are capable of computing risk. Though the existence of MSNs that co-express D1R and D2R are reported by various experimental studies, prior existing computational models did not include them. Ours is the first model that accounts for the computational possibilities of these co-expressing D1R-D2R MSNs, and describes how DA and 5HT mediate activity in these classes of neurons (D1R-, D2R-, D1R-D2R- MSNs). Starting from the assumption that 5HT modulates all MSNs, our study predicts significant modulatory effects of 5HT on D2R and co-expressing D1R-D2R MSNs which in turn explains the multifarious functions of 5HT in the BG. The experiments simulated in the present study relates 5HT to risk sensitivity and reward-punishment learning. Furthermore, our model is shown to capture reward-punishment and risk based decision making impairment in Parkinson's Disease (PD). The model predicts that optimizing 5HT levels along with DA medications might be essential for improving the patients' reward-punishment learning deficits. Frontiers Media S.A. 2015-06-17 /pmc/articles/PMC4469836/ /pubmed/26136679 http://dx.doi.org/10.3389/fncom.2015.00076 Text en Copyright © 2015 Balasubramani, Chakravarthy, Ravindran and Moustafa. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Balasubramani, Pragathi P. Chakravarthy, V. Srinivasa Ravindran, Balaraman Moustafa, Ahmed A. A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making |
title | A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making |
title_full | A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making |
title_fullStr | A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making |
title_full_unstemmed | A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making |
title_short | A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making |
title_sort | network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469836/ https://www.ncbi.nlm.nih.gov/pubmed/26136679 http://dx.doi.org/10.3389/fncom.2015.00076 |
work_keys_str_mv | AT balasubramanipragathip anetworkmodelofbasalgangliaforunderstandingtherolesofdopamineandserotonininrewardpunishmentriskbaseddecisionmaking AT chakravarthyvsrinivasa anetworkmodelofbasalgangliaforunderstandingtherolesofdopamineandserotonininrewardpunishmentriskbaseddecisionmaking AT ravindranbalaraman anetworkmodelofbasalgangliaforunderstandingtherolesofdopamineandserotonininrewardpunishmentriskbaseddecisionmaking AT moustafaahmeda anetworkmodelofbasalgangliaforunderstandingtherolesofdopamineandserotonininrewardpunishmentriskbaseddecisionmaking AT balasubramanipragathip networkmodelofbasalgangliaforunderstandingtherolesofdopamineandserotonininrewardpunishmentriskbaseddecisionmaking AT chakravarthyvsrinivasa networkmodelofbasalgangliaforunderstandingtherolesofdopamineandserotonininrewardpunishmentriskbaseddecisionmaking AT ravindranbalaraman networkmodelofbasalgangliaforunderstandingtherolesofdopamineandserotonininrewardpunishmentriskbaseddecisionmaking AT moustafaahmeda networkmodelofbasalgangliaforunderstandingtherolesofdopamineandserotonininrewardpunishmentriskbaseddecisionmaking |