Cargando…
Enhancing the Lasso Approach for Developing a Survival Prediction Model Based on Gene Expression Data
In the past decade, researchers in oncology have sought to develop survival prediction models using gene expression data. The least absolute shrinkage and selection operator (lasso) has been widely used to select genes that truly correlated with a patient's survival. The lasso selects genes for...
Autores principales: | Kaneko, Shuhei, Hirakawa, Akihiro, Hamada, Chikuma |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469838/ https://www.ncbi.nlm.nih.gov/pubmed/26146513 http://dx.doi.org/10.1155/2015/259474 |
Ejemplares similares
-
Gene Selection using a High-Dimensional Regression Model with Microarrays in Cancer Prognostic Studies
por: Kaneko, Shuhei, et al.
Publicado: (2012) -
Estimating the False Discovery Rate Using Mixed Normal Distribution for Identifying Differentially Expressed Genes in Microarray Data Analysis
por: Hirakawa, Akihiro, et al.
Publicado: (2008) -
A New Test Statistic Based on Shrunken Sample Variance for Identifying Differentially Expressed Genes in Small Microarray Experiments
por: Hirakawa, Akihiro, et al.
Publicado: (2008) -
The partitioned LASSO-patternsearch algorithm with application to gene expression data
por: Shi, Weiliang, et al.
Publicado: (2012) -
NeuralLasso: Neural Networks Meet Lasso in Genomic Prediction
por: Mathew, Boby, et al.
Publicado: (2022)