Cargando…
Design of a Tumorigenicity Test for Induced Pluripotent Stem Cell (iPSC)-Derived Cell Products
Human Pluripotent Stem Cell (PSC)-derived cell therapy holds enormous promise because of the cells’ “unlimited” proliferative capacity and the potential to differentiate into any type of cell. However, these features of PSC-derived cell products are associated with concerns regarding the generation...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470246/ https://www.ncbi.nlm.nih.gov/pubmed/26237025 http://dx.doi.org/10.3390/jcm4010159 |
Sumario: | Human Pluripotent Stem Cell (PSC)-derived cell therapy holds enormous promise because of the cells’ “unlimited” proliferative capacity and the potential to differentiate into any type of cell. However, these features of PSC-derived cell products are associated with concerns regarding the generation of iatrogenic teratomas or tumors from residual immature or non-terminally differentiated cells in the final cell product. This concern has become a major hurdle to the introduction of this therapy into the clinic. Tumorigenicity testing is therefore a key preclinical safety test in PSC-derived cell therapy. Tumorigenicity testing becomes particularly important when autologous human induced Pluripotent Stem Cell (iPSC)-derived cell products with no immuno-barrier are considered for transplantation. There has been, however, no internationally recognized guideline for tumorigenicity testing of PSC-derived cell products for cell therapy. In this review, we outline the points to be considered in the design and execution of tumorigenicity tests, referring to the tests and laboratory work that we have conducted for an iPSC-derived retinal pigment epithelium (RPE) cell product prior to its clinical use. |
---|