Cargando…
Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution
Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential techniques cannot be used. In such settings, Bayesian inference can be performe...
Autores principales: | White, S. R., Kypraios, T., Preston, S. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470364/ https://www.ncbi.nlm.nih.gov/pubmed/26097293 http://dx.doi.org/10.1007/s11222-013-9432-2 |
Ejemplares similares
-
Bayesian Inference for Nonnegative Matrix Factorisation Models
por: Cemgil, Ali Taylan
Publicado: (2009) -
Approximation methods for piecewise deterministic Markov processes and their costs
por: Kritzer, Peter, et al.
Publicado: (2019) -
Statistical inference for piecewise-deterministic Markov processes
por: Azais, Romain, et al.
Publicado: (2018) -
Approximate Bayesian Inference
por: Alquier, Pierre
Publicado: (2020) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference
por: Thijssen, Bram, et al.
Publicado: (2020)