Cargando…
Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models
Single-neuron models are useful not only for studying the emergent properties of neural circuits in large-scale simulations, but also for extracting and summarizing in a principled way the information contained in electrophysiological recordings. Here we demonstrate that, using a convex optimization...
Autores principales: | Pozzorini, Christian, Mensi, Skander, Hagens, Olivier, Naud, Richard, Koch, Christof, Gerstner, Wulfram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470831/ https://www.ncbi.nlm.nih.gov/pubmed/26083597 http://dx.doi.org/10.1371/journal.pcbi.1004275 |
Ejemplares similares
-
Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons
por: Mensi, Skander, et al.
Publicado: (2016) -
Automatic characterization of three cortical neuron types reveals two distinct adaptation mechanisms
por: Mensi, Skander, et al.
Publicado: (2011) -
Spike-timing prediction in cortical neurons with active dendrites
por: Naud, Richard, et al.
Publicado: (2014) -
Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram
por: Naud, Richard, et al.
Publicado: (2012) -
General conditions for spiking neurons and plasticity rules to perform independent component analysis
por: Brito, Carlos SN, et al.
Publicado: (2011)