Cargando…
Stochastic Synchronization in Purkinje Cells with Feedforward Inhibition Could Be Studied with Equivalent Phase-Response Curves
Simple-spike synchrony between Purkinje cells projecting to a common neuron in the deep cerebellar nucleus is emerging as an important factor in the encoding of output information from cerebellar cortex. A phenomenon known as stochastic synchronization happens when uncoupled oscillators synchronize...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471077/ https://www.ncbi.nlm.nih.gov/pubmed/26084702 http://dx.doi.org/10.1186/s13408-015-0025-6 |
Sumario: | Simple-spike synchrony between Purkinje cells projecting to a common neuron in the deep cerebellar nucleus is emerging as an important factor in the encoding of output information from cerebellar cortex. A phenomenon known as stochastic synchronization happens when uncoupled oscillators synchronize due to correlated inputs. Stochastic synchronization is a viable mechanism through which simple-spike synchrony could be generated, but it has received scarce attention, perhaps because the presence of feedforward inhibition in the input to Purkinje cells makes insights difficult. This paper presents a method to account for feedforward inhibition so the usual mathematical approaches to stochastic synchronization can be applied. The method consists in finding a single Phase Response Curve, called the equivalent PRC, that accounts for the effects of both excitatory inputs and delayed feedforward inhibition from molecular layer interneurons. The results suggest that a theory of stochastic synchronization for the case of feedforward inhibition may not be necessary, since this case can be approximately reduced to the case of inputs characterized by a single PRC. Moreover, feedforward inhibition could in many situations increase the level of synchrony experienced by Purkinje cells. |
---|