Cargando…
d-serine levels in Alzheimer's disease: implications for novel biomarker development
Alzheimer's disease (AD) is a severe neurodegenerative disorder still in search of effective methods of diagnosis. Altered levels of the NMDA receptor co-agonist, d-serine, have been associated with neurological disorders, including schizophrenia and epilepsy. However, whether d-serine levels a...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471283/ https://www.ncbi.nlm.nih.gov/pubmed/25942042 http://dx.doi.org/10.1038/tp.2015.52 |
Sumario: | Alzheimer's disease (AD) is a severe neurodegenerative disorder still in search of effective methods of diagnosis. Altered levels of the NMDA receptor co-agonist, d-serine, have been associated with neurological disorders, including schizophrenia and epilepsy. However, whether d-serine levels are deregulated in AD remains elusive. Here, we first measured D-serine levels in post-mortem hippocampal and cortical samples from nondemented subjects (n=8) and AD patients (n=14). We next determined d-serine levels in experimental models of AD, including wild-type rats and mice that received intracerebroventricular injections of amyloid-β oligomers, and APP/PS1 transgenic mice. Finally, we assessed d-serine levels in the cerebrospinal fluid (CSF) of 21 patients with a diagnosis of probable AD, as compared with patients with normal pressure hydrocephalus (n=9), major depression (n=9) and healthy controls (n=10), and results were contrasted with CSF amyloid-β/tau AD biomarkers. d-serine levels were higher in the hippocampus and parietal cortex of AD patients than in control subjects. Levels of both d-serine and serine racemase, the enzyme responsible for d-serine production, were elevated in experimental models of AD. Significantly, d-serine levels were higher in the CSF of probable AD patients than in non-cognitively impaired subject groups. Combining d-serine levels to the amyloid/tau index remarkably increased the sensitivity and specificity of diagnosis of probable AD in our cohort. Our results show that increased brain and CSF d-serine levels are associated with AD. CSF d-serine levels discriminated between nondemented and AD patients in our cohort and might constitute a novel candidate biomarker for early AD diagnosis. |
---|