Cargando…
Formation and Abundance of 5-Hydroxymethylcytosine in RNA
RNA methylation is emerging as a regulatory RNA modification that could have important roles in the control and coordination of gene transcription and protein translation. Herein, we describe an in vivo isotope-tracing methodology to demonstrate that the ribonucleoside 5-methylcytidine (m(5)C) is su...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471624/ https://www.ncbi.nlm.nih.gov/pubmed/25676849 http://dx.doi.org/10.1002/cbic.201500013 |
Sumario: | RNA methylation is emerging as a regulatory RNA modification that could have important roles in the control and coordination of gene transcription and protein translation. Herein, we describe an in vivo isotope-tracing methodology to demonstrate that the ribonucleoside 5-methylcytidine (m(5)C) is subject to oxidative processing in mammals, forming 5-hydroxymethylcytidine (hm(5)C) and 5-formylcytidine (f(5)C). Furthermore, we have identified hm(5)C in total RNA from all three domains of life and in polyA-enriched RNA fractions from mammalian cells. This suggests m(5)C oxidation is a conserved process that could have critical regulatory functions inside cells. |
---|