Cargando…

The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation

Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of...

Descripción completa

Detalles Bibliográficos
Autores principales: Rogala, Kacper B, Dynes, Nicola J, Hatzopoulos, Georgios N, Yan, Jun, Pong, Sheng Kai, Robinson, Carol V, Deane, Charlotte M, Gönczy, Pierre, Vakonakis, Ioannis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471805/
https://www.ncbi.nlm.nih.gov/pubmed/26023830
http://dx.doi.org/10.7554/eLife.07410
Descripción
Sumario:Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo. DOI: http://dx.doi.org/10.7554/eLife.07410.001