Cargando…

Targets for Combating the Evolution of Acquired Antibiotic Resistance

[Image: see text] Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from...

Descripción completa

Detalles Bibliográficos
Autores principales: Culyba, Matthew J., Mo, Charlie Y., Kohli, Rahul M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471857/
https://www.ncbi.nlm.nih.gov/pubmed/26016604
http://dx.doi.org/10.1021/acs.biochem.5b00109
Descripción
Sumario:[Image: see text] Bacteria possess a remarkable ability to rapidly adapt and evolve in response to antibiotics. Acquired antibiotic resistance can arise by multiple mechanisms but commonly involves altering the target site of the drug, enzymatically inactivating the drug, or preventing the drug from accessing its target. These mechanisms involve new genetic changes in the pathogen leading to heritable resistance. This recognition underscores the importance of understanding how such genetic changes can arise. Here, we review recent advances in our understanding of the processes that contribute to the evolution of antibiotic resistance, with a particular focus on hypermutation mediated by the SOS pathway and horizontal gene transfer. We explore the molecular mechanisms involved in acquired resistance and discuss their viability as potential targets. We propose that additional studies into these adaptive mechanisms not only can provide insights into evolution but also can offer a strategy for potentiating our current antibiotic arsenal.