Cargando…
Fuzzy association rule mining and classification for the prediction of malaria in South Korea
BACKGROUND: Malaria is the world’s most prevalent vector-borne disease. Accurate prediction of malaria outbreaks may lead to public health interventions that mitigate disease morbidity and mortality. METHODS: We describe an application of a method for creating prediction models utilizing Fuzzy Assoc...
Autores principales: | Buczak, Anna L., Baugher, Benjamin, Guven, Erhan, Ramac-Thomas, Liane C., Elbert, Yevgeniy, Babin, Steven M., Lewis, Sheri H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472166/ https://www.ncbi.nlm.nih.gov/pubmed/26084541 http://dx.doi.org/10.1186/s12911-015-0170-6 |
Ejemplares similares
-
Predicting Levels of Influenza Incidence
por: Buczak, Anna L., et al.
Publicado: (2014) -
Prediction of High Incidence of Dengue in the Philippines
por: Buczak, Anna L., et al.
Publicado: (2014) -
Validation of Analytic Methods for Combining Evidence Sources in Biosurveillance
por: Burkom, Howard, et al.
Publicado: (2014) -
Prediction of Peaks of Seasonal Influenza in Military Health-Care Data
por: Buczak, Anna L., et al.
Publicado: (2016) -
Ensemble method for dengue prediction
por: Buczak, Anna L., et al.
Publicado: (2018)