Cargando…
Evolution of Enzyme Kinetic Mechanisms
This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure–function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions ar...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472936/ https://www.ncbi.nlm.nih.gov/pubmed/25987355 http://dx.doi.org/10.1007/s00239-015-9681-0 |
Sumario: | This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure–function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions are easier to understand and much simpler than those of bi–bi substrate enzyme reactions. The increasing complexities of kinetic mechanisms, as well as the increasing number of enzyme subunits, can be used to shed light on the evolution of kinetic mechanisms. Enzymes with heterogeneous kinetic mechanisms attempt to achieve specific products to subsist. In many organisms, kinetic mechanisms have evolved to aid survival in response to changing environmental factors. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzymes with broad substrate specificity and promiscuous properties are believed to be more evolved than single-substrate enzymes. This group of enzymes can adapt to changing environmental substrate conditions and adjust catalysing mechanisms according to the substrate’s properties, and their kinetic mechanisms have evolved in response to substrate variability. |
---|