Cargando…

Serum chemistry and electrolyte alterations in sled dogs before and after a 1600 km race: dietary sodium and hyponatraemia

Sled dogs are known to develop numerous serum biochemical changes due to endurance exercise. Previous studies have suggested that mild hyponatraemia and hypokalaemia can develop during endurance racing. The aim of the present study was to determine if serum biochemical alterations are similar to pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Ermon, Valentina, Yazwinski, Molly, Milizio, Justin G., Wakshlag, Joseph J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473165/
https://www.ncbi.nlm.nih.gov/pubmed/26101595
http://dx.doi.org/10.1017/jns.2014.39
Descripción
Sumario:Sled dogs are known to develop numerous serum biochemical changes due to endurance exercise. Previous studies have suggested that mild hyponatraemia and hypokalaemia can develop during endurance racing. The aim of the present study was to determine if serum biochemical alterations are similar to previous reports, and if electrolyte alterations are still present with present feeding practices utilised by mushers. Serum chemistries were obtained from 26 Alaskan Huskies belonging to 3 different teams, before and after a 1600 km race. Meals and snacks were analysed via calculation to determine daily macronutrient and electrolyte intake. Numerous biochemical alterations were observed including significant differences in serum total protein, albumin, globulin, aspartate aminotransferase, creatine kinase, TAG, NEFA and urea nitrogen (P < 0·05). Serum electrolyte status revealed a mild, yet significant decrease in serum sodium (P = 0·002); and serum potassium was not significantly different (P = 0·566). Further examination of the sodium intake across the three teams revealed two teams with an average daily intake of approximately 8·5 g/dog/d (700 mg/4184 kJ) and the other team consuming 11·1 g/dog/d (1200 mg/4184 kJ). Regression analysis shows a significant modest positive correlation between serum sodium decrease and sodium intake per metabolic body weight of the dogs, as well as a modest positive correlation between sodium intake and serum potassium implicating the renin–angiotensin aldosterone system as a major factor involved in sodium and potassium homoeostasis. These findings suggest that consumption of approximately 0·9 g/kg(0·75) (1·2 g/4184 kJ) of sodium per d may prevent exercise-induced decreases in sodium and potassium.