Cargando…
Quantitative Decomposition of Dynamics of Mathematical Cell Models: Method and Application to Ventricular Myocyte Models
Mathematical cell models are effective tools to understand cellular physiological functions precisely. For detailed analysis of model dynamics in order to investigate how much each component affects cellular behaviour, mathematical approaches are essential. This article presents a numerical analysis...
Autores principales: | Shimayoshi, Takao, Cha, Chae Young, Amano, Akira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474442/ https://www.ncbi.nlm.nih.gov/pubmed/26091413 http://dx.doi.org/10.1371/journal.pone.0124970 |
Ejemplares similares
-
Time-dependent changes in membrane excitability during glucose-induced bursting activity in pancreatic β cells
por: Cha, Chae Young, et al.
Publicado: (2011) -
A Mathematical Model of the Mouse Ventricular Myocyte Contraction
por: Mullins, Paula D., et al.
Publicado: (2013) -
Spiral-Wave Dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts
por: Nayak, Alok Ranjan, et al.
Publicado: (2013) -
Ionic Mechanisms of Propagated Repolarization in a One-Dimensional Strand of Human Ventricular Myocyte Model
por: Himeno, Yukiko, et al.
Publicado: (2023) -
A Compartmentalized Mathematical Model of the β(1)-Adrenergic Signaling System in Mouse Ventricular Myocytes
por: Bondarenko, Vladimir E.
Publicado: (2014)