Cargando…

Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence

Much like replicative senescence, the irreversible cell-cycle arrest induced by eroded telomeres, accelerated senescence occurs when replicative cells suffer irreparable DNA double-strand breaks (DSBs). Along with apoptosis and necrosis, senescence is a desirable outcome in cancer treatment with ion...

Descripción completa

Detalles Bibliográficos
Autores principales: Labay, Edwardine, Efimova, Elena V, Quarshie, Benjamin K, Golden, Daniel W, Weichselbaum, Ralph R, Kron, Stephen J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474479/
https://www.ncbi.nlm.nih.gov/pubmed/26097382
http://dx.doi.org/10.2147/IJHTS.S17076
_version_ 1782377281364164608
author Labay, Edwardine
Efimova, Elena V
Quarshie, Benjamin K
Golden, Daniel W
Weichselbaum, Ralph R
Kron, Stephen J
author_facet Labay, Edwardine
Efimova, Elena V
Quarshie, Benjamin K
Golden, Daniel W
Weichselbaum, Ralph R
Kron, Stephen J
author_sort Labay, Edwardine
collection PubMed
description Much like replicative senescence, the irreversible cell-cycle arrest induced by eroded telomeres, accelerated senescence occurs when replicative cells suffer irreparable DNA double-strand breaks (DSBs). Along with apoptosis and necrosis, senescence is a desirable outcome in cancer treatment with ionizing radiation (IR) or chemotherapy. In both normal and cancer cells, DSBs promote the assembly of IR-induced foci (IRIF), domains of modified chromatin that serve a key role in DNA damage signaling. IRIF persistence is a critical determinant of accelerated senescence, making drugs that promote persistent IRIF an attractive strategy to sensitize cancer to genotoxic therapy. As an IRIF reporter, we have expressed an inducible green fluorescent protein (GFP) fusion to the IRIF-binding domain (IBD) of 53BP1 (GFP-IBD) in the breast cancer cell line MCF7. Within minutes of exposure to IR, the GFP-IBD relocalizes to form fluorescent nuclear foci, which disperse within several hours. A pair of high-content screening assays for IRIF formation and persistence were established in multiwell plates based on imaging and quantifying GFP-IBD foci per Hoechst-stained MCF7 nucleus at 2 hours and 24 hours. Using the ataxia telangiectasia-mutated inhibitor CGK733 to block IRIF formation and the topoisomerase II inhibitor etoposide to prevent IRIF resolution, we obtained a Z′ >0.8 both for IRIF formation at 2 hours and IRIF persistence at 24 hours. Screening the diverse drugs and natural products in the National Cancer Institute Developmental Therapeutics Program Approved Oncology Drugs Set, the National Institutes of Health Clinical Collection, and the MicroSource Spectrum Collection yielded multiple hits that significantly delayed IRIF resolution. Secondary screening suggested some of these otherwise nontoxic drugs also enhance accelerated senescence, indicating strong potential for their repurposing as radiation sensitizers to improve the efficacy of cancer therapy.
format Online
Article
Text
id pubmed-4474479
institution National Center for Biotechnology Information
language English
publishDate 2011
record_format MEDLINE/PubMed
spelling pubmed-44744792015-06-19 Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence Labay, Edwardine Efimova, Elena V Quarshie, Benjamin K Golden, Daniel W Weichselbaum, Ralph R Kron, Stephen J Int J High Throughput Screen Article Much like replicative senescence, the irreversible cell-cycle arrest induced by eroded telomeres, accelerated senescence occurs when replicative cells suffer irreparable DNA double-strand breaks (DSBs). Along with apoptosis and necrosis, senescence is a desirable outcome in cancer treatment with ionizing radiation (IR) or chemotherapy. In both normal and cancer cells, DSBs promote the assembly of IR-induced foci (IRIF), domains of modified chromatin that serve a key role in DNA damage signaling. IRIF persistence is a critical determinant of accelerated senescence, making drugs that promote persistent IRIF an attractive strategy to sensitize cancer to genotoxic therapy. As an IRIF reporter, we have expressed an inducible green fluorescent protein (GFP) fusion to the IRIF-binding domain (IBD) of 53BP1 (GFP-IBD) in the breast cancer cell line MCF7. Within minutes of exposure to IR, the GFP-IBD relocalizes to form fluorescent nuclear foci, which disperse within several hours. A pair of high-content screening assays for IRIF formation and persistence were established in multiwell plates based on imaging and quantifying GFP-IBD foci per Hoechst-stained MCF7 nucleus at 2 hours and 24 hours. Using the ataxia telangiectasia-mutated inhibitor CGK733 to block IRIF formation and the topoisomerase II inhibitor etoposide to prevent IRIF resolution, we obtained a Z′ >0.8 both for IRIF formation at 2 hours and IRIF persistence at 24 hours. Screening the diverse drugs and natural products in the National Cancer Institute Developmental Therapeutics Program Approved Oncology Drugs Set, the National Institutes of Health Clinical Collection, and the MicroSource Spectrum Collection yielded multiple hits that significantly delayed IRIF resolution. Secondary screening suggested some of these otherwise nontoxic drugs also enhance accelerated senescence, indicating strong potential for their repurposing as radiation sensitizers to improve the efficacy of cancer therapy. 2011-03-31 2011-03 /pmc/articles/PMC4474479/ /pubmed/26097382 http://dx.doi.org/10.2147/IJHTS.S17076 Text en © 2011 Labay et al, publisher and licensee Dove Medical Press Ltd. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.
spellingShingle Article
Labay, Edwardine
Efimova, Elena V
Quarshie, Benjamin K
Golden, Daniel W
Weichselbaum, Ralph R
Kron, Stephen J
Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence
title Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence
title_full Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence
title_fullStr Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence
title_full_unstemmed Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence
title_short Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence
title_sort ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474479/
https://www.ncbi.nlm.nih.gov/pubmed/26097382
http://dx.doi.org/10.2147/IJHTS.S17076
work_keys_str_mv AT labayedwardine ionizingradiationinducedfocipersistencescreentodiscoverenhancersofacceleratedsenescence
AT efimovaelenav ionizingradiationinducedfocipersistencescreentodiscoverenhancersofacceleratedsenescence
AT quarshiebenjamink ionizingradiationinducedfocipersistencescreentodiscoverenhancersofacceleratedsenescence
AT goldendanielw ionizingradiationinducedfocipersistencescreentodiscoverenhancersofacceleratedsenescence
AT weichselbaumralphr ionizingradiationinducedfocipersistencescreentodiscoverenhancersofacceleratedsenescence
AT kronstephenj ionizingradiationinducedfocipersistencescreentodiscoverenhancersofacceleratedsenescence